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ABSTRACT 
BeatBender is a computer music project that explores a new 
method for generating emergent rhythmic drum patterns using 
the subsumption architecture. Rather than explicitly coding 
symbolic intelligence into the system using procedural 
algorithms, BeatBender uses a behavior-based model to elicit 
emergent rhythmic output from six autonomous agents. From an 
artistic perspective, the rules used to define the agent behavior 
provide a simple but original composition language. This 
language allows the composer to express simple and meaningful 
constraints that direct the behavior of the agent-percussionists. 
From these simple rules emerge unexpected behavioral 
interactions that direct the formation of complex rhythmic 
output. What is striking is that these rhythmic patterns, whose 
complexity is beyond human grasp, are both musically 
interesting and aesthetically pleasing. The output from the 
system is evaluated using both subjective and objective criteria 
to assess degrees of complexity, convergence, and aesthetic 
interest. 

Categories and Subject Descriptors 
H.5.5 Sound and Music Computing: Systems 
 
General Terms 
Performance, Experimentation, Aesthetics 
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1. INTRODUCTION 
The development of artificial intelligence (AI) techniques have 
allowed artist to develop computational works that are capable 
of autonomous creative behavior. Such artworks are now 
commonly referred to as metacreations [1]. Unlike traditional 
artistic methods in which the artist maintains control over the 
final form and representation of their work, these new methods 
are more open ended. The artist’s role in development of a 
metacreation becomes that of the programmer, developing a 
system that will ultimately produce the artwork itself.  
 

The ability of computers to exhibit intelligent and creative 
behaviors has been demonstrated through their use in solving 
problems beyond human capabilities; they have produced 
paintings [2] and music [3]; and they have outwitted the best 
human chess players [4]. While questions remain about the 
nature of intelligence and how machine intelligence differs from 
biological intelligence, it is now an accepted fact that computers 
can exhibit behavior that would be considered intelligent if 
demonstrated by a human. The questions now being asked seek 
to define the limits and possibilities of computational 
intelligence. 
 
Working with metacreations allows for the application of AI 
techniques in unusual and interesting ways. By repurposing AI 
techniques, developers of metacreations produce works that are 
highly engaging and aesthetically pleasing. These explorations 
also provide new methods for applying AI techniques that can 
be utilized in scientific, economic, and entertainment 
applications.  
 
Metacreations have utilized various AI techniques in 
accomplishing specific goals. Often, multiple AI techniques are 
used collectively to engender greater complexity or creative 
behavior. Artificial neural networks, autonomous agents, 
cellular automata (CA), genetic algorithms/programming, as 
well as various artificial life techniques have all been utilized in 
the production of metacreations.  
 
This paper presents a computer music project called BeatBender 
that explores a new method for generating rhythmic drum 
patterns using the subsumption architecture developed by 
Rodney Brooks [5]. Rather than explicitly coding symbolic 
intelligence into the system using procedural algorithms, 
BeatBender uses a behavior-based model that facilitates 
emergent expression.  Subsumption architecture systems are 
designed to respond to stimuli in the environment using a 
hierarchical set of rules. Depending on the state of the 
environment, different rules of varying complexity are invoked, 
generating the behavioral output of the system. From an artistic 
perspective, the rules used to define the agent behavior provide a 
simple but original composition language. This language allows 
the composer to express simple and meaningful constraints that 
direct the behavior of the agent-percussionists. From these 
simple rules emerge unexpected behavioral interactions that 



direct the formation of complex rhythmic output. What is 
striking is that these rhythmic patterns, whose complexity is 
beyond human grasp, are both musically interesting and 
aesthetically pleasing. 
 
The BeatBender system is comprised of six autonomous agents, 
each responsible for the production of one beat of every measure 
in an ongoing rhythm.  Each agent is designed to react 
individually to a set of perceptions at different, but sequential, 
points in time. The interaction between agents is determined by 
rules which are encoded into the layers of the subsumption 
architecture. The agents’ behaviors, which are determined by 
their collective interaction, generate audio output in the form of 
complex and aesthetically interesting rhythmic patterns. This 
paper describes the development of the BeatBender system and 
the explorations undertaken using the subsumption architecture 
to design a multi-agent system capable of eliciting emergent 
behavior. 
 
2. BACKGROUND 
While rhythm generation is not a new subject in computer 
music, the use of the subsumption architecture as the foundation 
for such a system has never been tried. The subsumption 
architecture is well suited for rhythm generation since the 
articulation of beats does not require any form of symbolic 
representation. The intuitive nature of rhythm production has 
been demonstrated by researchers studying the evolutionary 
basis of human and cross-species rhythmic abilities [6]. Using 
the subsumption architecture allows autonomous agents in a 
closed system to exhibit emergent behavior through their 
collective interaction. By prioritizing the interaction among 
behaviors, the subsumption architecture is an ideal tool to model 
the ways in which participants in a drum circle react and adapt 
to each others’ distinct playing styles. This results in a process 
of rhythm development that is both emergent and dynamic. 
 
2.1 Subsumption Architecture 
An agent is a computer system or component capable of 
independent autonomous action [7].  Agents are self-directed 
and perform actions within an environment in order to meet their 
design objectives. A multi-agent system consists of a number of 
agents that are capable of interacting to meet an individual or 
collective goal.  BeatBender is a multi-agent system in which 
agents respond to each other’s behaviors in order to generate 
rhythmic output. Rather than explicitly coding each agent’s 
behavior ahead of time, BeatBender constrains the agents’ 
actions through the use of the subsumption architecture.  
 

 
Figure 1: Subsumption Architecture 

 

The use of the subsumption architecture as a means of eliciting 
emergent behavior in robots was introduced by Rodney Brooks 
in his seminal paper “Intelligence without Representation” [5] 
Rather than utilizing explicitly programmed algorithmic 
solutions, subsumption architecture systems focus on developing 
sets of behaviors; these behaviors are implemented as layers, 
with some layers given priority over others. Low level layers are 
given the lowest priority and usually invoke non-critical 
behaviors. Higher level layers generally invoke behaviors that 
are more complex and often vital to the functioning of the 
system (Figure 1).  Specific layer behaviors are often selected 
based on environmental data gathered using sensors; however 
other data can be used as well.   
 
While the subsumption architecture methodology has been 
primarily utilized in the field of robotics it is equally applicable 
to other endeavors in which emergent system behaviors are 
desired.  For example, Bryson et al used the architectures in the 
development of a musical accompanist [8]  and Nakashima and 
Noda incorporated it into their design of intelligent agents 
capable of playing soccer games [9]. While the subsumption 
architecture has been applied in musical systems, it has been 
solely toward the production of tonal output. BeatBender, uses 
the subsumption architecture for the purpose of exploring 
emergent rhythm generation.  
 
2.2 Prior Work 
As a metacreation, BeatBender positions itself within two 
different disciplines. First, BeatBender must be situated among 
works that explore rhythm generation. Second, it must be 
situated among general electronic music applications that utilize 
AI techniques. 
 
Rhythm generation applications take various forms and serve a 
variety of purposes. In general, most of these types of 
applications are designed to produce rhythms as accompaniment 
to a human performance. One example of this is Haile, the 
anthropomorphic robotic percussionist designed by Weinberg 
and Driscoll [10].  Haile is capable of both mimicking and 
collaborating with a live human performer. One of Weinberg’s 
primary goals was the implementation of a system that would 
allow Haile to develop meaningful representations of music in 
real-time. Haile uses complex analysis software to both establish 
the characteristics of the live performance and to compute 
rhythmic output. One of the benefits of subsumption architecture 
is the significant reduction of computational load since there is 
no need for symbolic representation. Complex behavior can be 
elicited using simple behavior-based rules.  
 
Several systems, including Eigenfeldt’s Kinetic-Engine [11], 
utilize agents as a means of representing individual drummers 
within a composition. Like BeatBender, Kinetic-Engine is a 
metacreation and requires no real-time input from a user.   
Kinetic-Engine uses networked agent architecture to emulate a 
percussive ensemble. When activated, the system assigns 
“personalities” to the agents who collectively personify the 
human elements in a drum circle. Eigenfeldt’s agent system 
requires a much higher level of complexity than systems 
utilizing the subsumption architecture. Kinetic Engine uses a 
social model of agent interaction to emulate the behavior of live 
human performers. Agents “make eye contact” with one another 



and, once connected, adjust to each other’s performance. In 
addition, a special agent type called a conductor is used to 
oversee high level organizational elements. The need for a 
centralized agent model demonstrates the complexity of the 
system.  Eigenfeldt claims that this level of complexity is 
necessary in order for a system to be “musically successful.” He 
cites Brown’s work [12] with rhythm generating CA as evidence 
of this. BeatBender explores emergence as an alternate means of 
generating musically successful rhythmic output using a 
decentralized agent model.  
 
Pachet also developed a multi-agent system for generating and 
evolving rhythms [13]. Pachet’s system has several similarities 
to BeatBender including its use of a rule-based approach to 
rhythm generation. However, unlike BeatBender’s rules which 
are layered within the subsumption architecture, Pachet’s rules 
explicitly direct patterns towards a particular type of known 
structure (e.g. a rock beat). While Pachet’s rules provide a 
greater degree of control and allow for the shaping of the 
rhythms in much more direct ways, they do not provide an 
opportunity for emergent behaviors to develop.    
 
The use of multi-agents systems is only one of many AI 
techniques that can be used in rhythm exploration. As noted 
earlier, Brown explored the rhythm generating potential of 
cellular automata (CA) [12]. One of the properties of CA is their 
tendency to exhibit predictable types of behavior. In Brown’s 
paper he describes various rules and techniques that he 
uncovered during his exploration of linear CAs. His techniques 
are categorized based on the resultant behavior. Some behaviors 
include: rhythmic inversion, density thinning, evolving 
inversion, and emergent cycles. Brown concludes that these 
techniques result in patterns that lack musical meaning, and are 
more “intellectually fascinating” than aesthetically valuable. 
While BeatBender does not use CA explicitly, the linear 
relationship between agents results in similar behavior. 
However, there are two major differences between these types of 
systems; First, CA cells are processed in parallel while 
BeatBender’s agents are processed in series. Second, 
BeatBender’s subsumption rules implicitly encode system 
intelligence, allowing for the emergence of adaptive and 
contextual behavior. CA rules, on the other hand, are hardcoded 
prior to system activation, inhibiting responsive behavior.  
 
Miranda [14] also used CA as the basis for a musical 
composition system. Rather than focusing on rhythms, however, 
he produced two systems capable of producing complete 
instrumental pieces. CAMUS generates MIDI notes using 2 
discrete CA models:  The Game of Life and Demon Cyclic 
Space. These two CAs work together to generate notes and 
arrange them within a composition.  Choasynth uses CA to 
control a granular synthesis process based on the way electrical 
current flows through capacitors. Each cell controls the 
frequency of an oscillator that determines the makeup of a 
particular sound.  The complexity of Miranda’s systems is 
necessary to overcome the predictable nature of CAs and to 
allow for the development of rich musical output. Much of this 
complexity, however, is required solely to add structure to 
compositions and not in the process of musical generation. 
Additionally, the techniques used in this process, such as bitwise 
operations, utilize arbitrary mappings that do not rely on 

computational intelligence. The subsumption architecture 
alleviates the need for such arbitrary mappings by encoding 
intelligence directly into the agents.  
 
Other techniques including neural networks and genetic 
programming/algorithms have also been applied to the 
production of computationally generated rhythmic patterns. 
Dolson describes the use of a neural network to both classify 
and generate rhythmic patterns [15]. Neural network systems, 
however, are not capable of emergent behavior since they are 
only able to replicate and combine rhythms that they have 
previously been trained to identify.  
  
Tokui and Iba demonstrate the use of interactive evolutionary 
computation (IEC) as a means of producing rhythms in their 
CONGA system [16]. This system demonstrates the complexity 
that is often required to design a system that produces musically 
successful rhythmic output. The CONGA system uses a 
combination of both genetic programming and genetic 
algorithms to produce rhythms. BeatBender aims to accomplish 
similar goals using the subsumption architecture which 
alleviates the need for such a high degree of complexity.  
 
3. SYSTEM DESCRIPTION 
BeatBender is an autonomous rhythmic sequencer utilizing a 
scalable multi-agent system. Scalability is desirable property of 
any distributed system, as it is a good indicator of its 
decentralized nature. In this paper, we limit ourselves to six 
agents but this number can easily be adapted for different needs. 
Each agent in the system is responsible for the generation of one 
beat of every measure of continuous rhythmic output. At any 
given time the agents can be in one of two states: ON or OFF. 
During initialization all agents are set to OFF. When the system 
is started, each agent is activated one at a time in sequence. An 
agent’s state is determined by a set of conditional rules that are 
applied at the exact moment of activation. These rules are 
implemented using the subsumption architecture (presented in 
section 2.1). If, after processing, the agent’s state is set to ON, a 
drum sound is triggered; if the agent’s state is set to OFF no 
sound is produced.   
 
3.1 Design Considerations 
Using the subsumption architecture for the BeatBender project 
requires two distinct design phases: building the architecture, 
and implementing the specific layers used by the subsumption 
system. The initial phase involves the implementation of a 
robust tool that allows for the exploration of various possible 
layer rules. These rules become the basis for the behaviors that 
each agent is capable of performing. This tool incorporates a 
flexible interface for enabling and disabling behaviors as well as 
adjusting layer hierarchies. Additionally, it includes a graphical 
representation as well as a text output system to record the 
specific output of the generated rhythmic patterns for analysis.  
 
The second design phase utilizes the tool described above to 
explore subsumption rules and layer configurations in order to 
elicit emergent behavior. These behaviors were evaluated based 
on the characteristics of the rhythmic output. 
 
 



3.2 The BeatBender Agents 
The Beatbender system consists of six independent agents, each 
one capable of triggering audio events. The agents have states 
which can be set to either ON or OFF. When the system is 
activated, the state of each agent is computed in sequence. As 
each agent is activated, the subsumption architecture determines 
which behaviors to perform based on the current configuration 
of the system and sets the agent’s state to be either on or off. At 
any time multiple behaviors can be triggered, but only the one 
on the highest subsumption layer is enacted to determine the 
agent’s new sate. Once the new state has been set the system 
updates the environment variables which include the state of 
each agent as well as the total number of agents in the ON state. 
If a particular agent’s state is set to ON then an audio event is 
triggered and one of three drum sounds plays as determined by 
the subsumption layer rules1.  
 

 
Figure 2: The state of all six agents over three time steps.  

The current activity of the system is visually depicted using a 
display on the main interface (Figure 2). The display depicts all 
six agents in a horizontal row.  A yellow dot next to each agent 
representation indicates when a particular agent is being 
activated. The green dot next to each agent representation 
indicates the current state of the agent. If the green dot is 
present, then the agent is in its ON state indicating that it 
triggered a drum sound on the last cycle. Figure 3 shows the 
portion of the interface that displays each agent’s respective 
state.  In the illustration, the interface has been replicated three 
times in order to show three sequential time steps. 
 

 
Figure 3: The Rules Interface 

 
3.3 Subsumption Layer Tools 
As well as providing a visual representation of the state of each 
agent in the system, the BeatBender software also includes an 
interface to assist in the exploration of the system behavior 
(Figure 3). This interface allows specific layers to be turned on 
or off and for the rankings of individual layers to be adjusted. 
Layers that are assigned lower ranks are subsumed by layers 
with higher ranks. This forms the basis for the subsumption 
architecture. Figure 3 shows the setting for three layers. In the 
illustration, layers 1 and 3 are both activated. The interface 
allows for up to 10 layers to be explored simultaneously.  
  
3.4 Analysis Tools 
The BeatBender interface also consists of a graphical 
representation of the last six patterns played by the system. This 

                                                 
1 While only 3 sounds were used for this implementation of 
BeatBender, there is no limit to the number of drum sounds that 
can be used. 

permits quick analysis of the rhythmic structure that the current 
system configuration is generating (Figure 4). Each horizontal 
row illustrates one cycle of the system with the state of each 
agent indicated by a red dot. The vertical rows illustrate each 
particular agent’s state over time. The first full cycle is 
displayed in the top row with each subsequent cycle appearing 
one level lower. After all six rows are filled the display return to 
the top row.  
 

 
Figure 4: Representation of current beat pattern 

 
The interface also captures each rhythm as a text file. This 
allows for more complex rhythmic structures to be identified 
and analyzed. Rhythms are coded using an “X” for every ON 
beat and a “_” for every rest (OFF beat). Using this scheme the 
rhythm illustrated in Figure 5 would be output as: 

 
X _ X _ _ X 
_ X _ X X _ 
X _ X _ _ X 
_ X _ X X _ 
X _ X _ _ X 
_ X _ X X _ 

 
Both the layer tools and the analysis tools are particularly 
important for working with a system utilizing the subsumption 
architecture. In order for the system to produce emergent 
rhythmic patterns, numerous configurations of behaviors and 
rankings need to be tried. Each layer of the architecture must be 
implemented, tested, and modified in order to identify 
configurations that produce complex agent interactions, and 
consequently, interesting rhythmic output. Typically, in 
subsumption architecture systems, the layers are implemented 
linearly, starting from the zeroth layer (the lowest level) and 
ending with the highest level layer. For BeatBender, though, the 
layer tool allows for the exploration of the various permutations 
by providing a method for quickly reordering layer rules. In a 
system such as this where the success of the behaviors is based 
partially on aesthetic criteria, this interface was an essential 
element. 
 
The analysis tools were also essential for evaluating the output 
produced by the system. While the success of the BeatBender 
system was based partially on subjective criteria, the objective 
analysis of the rhythms was accomplished by looking for 
patterns within the rhythmic structures. The graphical 
representation of the rhythms and, in particular, the logging of 
each rhythm as text, enabled this quantitative analysis to be 
done.    
 



4. SYSTEM COMPONENTS 
4.1 The Agents 
A single Agent was developed to represent each of the drummers 
in the system. This agent was instantiated six times to create the 
full BeatBender model.  
 

 
Figure 5: System Diagram 

 
The Agent module acts as a container for the other components 
that are required for the system to function. This includes the 
Layers module and the Sound module. The Layers module 
implements the entire subsumption architecture system and the 
Sound module implements the audio playback system (Figure 
5). Only the system responsible for controlling meter and timing 
was implemented separately from the Agent Module. This 
Timing system is responsible for the sequential activation of 
each agent and controlling the rate at which the agents are 
triggered.  
 
4.2 System Goals 
While applications that use the subsumption architecture to 
control robots have specific system goals such as avoiding 
objects, the goals for the generation of interesting rhythmic 
patterns are less straightforward. The subjective nature of 
assessing the quality of rhythmic patterns also presents 
additional difficulties. Despite these challenges, specific criteria 
were established to both subjectively and objectively assess the 
quality of the rhythms generated by the system.  
 
For BeatBender, the goal state is one in which the agents exhibit 
emergent behaviors and the resulting rhythmic output displays 
recognizable repeating rhythmic patterns. The rhythms produced 
in such a scenario should not be radically different from one 
time step to the next, but rather should slowly evolve while 
maintaining some regularity. This development of rhythmic 
patterns with these characteristics will be dependent upon the 
rules implemented within the layers of the subsumption 
architecture. 

The rhythmic output from BeatBender is also evaluated on 
aesthetic criteria. This assessment takes into account both the 
quality of the rhythmic pattern produced by the system and the 
instrumentation used to play it. The quality criterion assesses the 
musicality of each rhythm as well as its perceived complexity. 
This criterion assesses the aesthetics of the rhythm’s structure 
regardless of how it is performed. The instrumentation criterion 
evaluates the musicality of the particular drum sounds used to 
play the rhythm. While the instrumentation does not affect the 
beat pattern produced by the system, it does alter the listener’s 
perception of the rhythmic structure. Successful instrumentation 
will use the available drum sounds to produce the effect of 
multiple drummers performing together.  Rather than sounding 
like a single rhythm being performed, the listener should 
perceive several discrete rhythmic patterns, reflecting the 
responsive nature of the agents within the system.  
 
4.3 Agent Behaviors 
Agents can perform only two types of behaviors: they can 
change their state and they can select a drum sound to play. 
When an agent implements a state change it can turn ON, turn 
OFF, or FLIP its state. If, after processing, an agent is set to the 
ON state then it also must select a drum sound to use for 
playback. The current implementation of BeatBender provides 
three sound options, each one a different variation of a tabla 
drum: a long hit, a solid hit, and a low hit. These sounds were 
specifically selected and sampled from live instruments in order 
to produce a more natural rhythmic output. 
 
4.4 Agent Perceptions 
Each agent is continually updated with specific perceptions 
which are used to determine which behaviors are enacted under 
which conditions. Rather than utilizing the physical sensors that 
a robot would use, BeatBender maintains a representation of the 
current virtual “environment” using a set of perceptions that are 
updated when an agent is activated. These perceptions include: 
the agent’s state, the previous agent’s state, the next agent’s state 
and the number of currently active agents in the system. Each 
one of these perceptions is used to determine which behavior 
should be enacted by the system by running them through a 
series of conditional statements. These conditional statements 
and the behaviors they enact are the basis for the subsumption 
layers that determine agent behavior. Using agent perceptions in 
this way replaces the need for the physical sensors that are used 
in robotic subsumption systems.  
 
4.5 Layers and Rules 
Layers are made up of one or more rules. Each rule has an 
antecedent and a consequence. The antecedent provides the 
precondition necessary for a rule to be instantiated. Antecedents 
use agent perceptions to test if specific preconditions have been 
met. The consequence selects the specific behaviors to enact if a 
precondition is met.  
 
Each layer is also given a rank value. The rank value is used to 
set the order in which rules are processed. Rules on layers with 
higher rank values will supersede lower level rules. If the 
preconditions for two rules are met simultaneously, only the rule 
associated with the highest ranked layer will have its behaviors 
enacted.  



Rule antecedents can be of two kinds: general and specific. 
Specific antecedents are designed to trigger behaviors only 
under very specific conditions. Rules with these types of 
antecedents tend to be given high rank values to ensure that they 
are activated when a specific condition arises. Rules with 
general antecedents, on the other hand, are usually given low 
rank values since they will be triggered under numerous 
conditions. Ranking rules this way ensures that these rules 
behaviors will only be instantiated if all the other rules have 
been passed over. A balance between general and specific 
antecedents is necessary for the BeatBender system to take 
advantage of the subsumption architecture and to develop 
interesting rhythmic patterns.  
 
The rules used in BeatBender can be divided into four 
categories: Collective, Directed, Temporal and Undirected.  
 
Collective rules use information about the total number of active 
agents in the system. An example of this type of rule would be: 
If there are more than 3 active agents then turn this agent on. In 
order to make transcription of rules simpler this same rule can 
be written in shorthand like this: 
 

IF TOTALAGENTS > 3 THEN ON 
 
Directed rules are based on information about an agent’s 
specific neighbor or neighbors. An example of such a rule would 
be: If the previous agent is on then flip this agent’s state. This 
could be shorthanded as: 

 
IF P = ON THEN FLIP 

 
Temporal rules are based on information about a agent’s state 
over time. These rules can either track the number of 
consecutive ON and OFF states an agent has been in, or 
alternately, the total number of times an agent has been in either 
the ON or OFF state.   An example of this type of rule is: If the 
agent has been on for the last four cycles then turn it off. This 
can be shorthanded to: 
 

IF CONSECUTIVE > 4 THEN OFF 
 
Undirected rules are based on information about an agent and its 
neighbors but without reference to a specific agent’s state.  
These rules are based on the techniques described by Brown in 
his paper Exploring Rhythmic Automata [12] which are 
themselves based off of Stephen Wolfram`s classification of CA 
behavior in general.  These types of rules take into account the 
states of the current agent, previous agent and next agent (P, C, 
and N) the sum of which is used to assess local activity. If an 
agent is on then its value is 1; if it is off its value is 0. Unlike 
other types of rules, Undirected rules often include multiple 
conditions for each possible outcome (0 – 3) with each 
triggering a different behavior. The possible behaviors in this 
case are: turn on (ON), turn off (OFF), leave unchanged (U) or 
ignore (I). It is important to note the significant difference 
between leaving an agent unchanged and ignoring it. This 
difference illustrates the functionality of the subsumption 
architecture. When a condition statement results in the Ignore 
behavior, no action is taken. This allows rules on lower layers to 
get processed and to enact alternate behaviors. When a condition 

statement results in the Unchanged behavior, however, an 
agent’s state is set and lower level rules do not get processed. 
An example of an Undirected rule is: 
 

0  ON, 1  U, 2  I, 3  OFF 
 
In this example, if the sum of the three agents’ states is 0 then 
the agent is turned on. If the sum is 1 the agent’s state is 
unchanged. If the sum is 2 the agent is ignored. If the sum is 3 
the agent is turned off.  
 
5.  EVALUATION 
BeatBender was evaluated on two distinct criteria: emergence 
and aesthetics. The emergence criterion was assessed using 
simple objective measures; the aesthetic criterion was assessed 
using subjective measures.  
 
5.1 Emergence 
The objective evaluation of BeatBender was done to assess the 
system’s ability to exhibit interesting emergent behavior. Since 
BeatBender is comprised solely of agents capable of 
independent action, emergence manifests through the interaction 
between agent’s behaviors. The emergent characteristics of the 
multi-agent system’s behavior are revealed in the rhythmic 
pattern generated by the system as it converges towards 
equilibrium. These characteristics exhibit themselves in the form 
of convergent and recurrent structures within the generated 
rhythmic patterns.  A comparison of different rule 
configurations can be done by evaluating the quality of 
convergence based on two factors: the length of the converging 
pattern and the length of the recurring pattern.  
 
An analysis of the patterns produced by BeatBender was 
completed using the visual representation of the rhythmic output 
generated with the built-in assessment tools described in section 
3.5.  Rules were evaluated individually first, then in 
combination.  
 
 5.1.1 Individual Rules 
The application of individual rules does not produce interesting 
emergent behavior since isolated rules immediately set the 
system into a state of equilibrium. Only though the interaction of 
two or more local elements is the process of convergence made 
visible. Individual rules do, however, produce rhythms that 
reveal two distinct types of behavior: Consistent and Cyclical. 
The multi-agent system is said to exhibit Consistent behavior if 
each agent maintains the same state in every cycle. The multi-
agent system exhibits Cyclical behavior if the agents’ states 
alternate on two or more subsequent cycles. The following chart 
shows rules that produce both types of behaviors:  
 
 

Rule Applied Pattern Generated Behavior 

IF P=OFF then ON X _ X _ X _ Consistent 

IF N = OFF then ON X X X X X _ Consistent 



IF P=N then FLIP 

 
X _ X _ X X 
X X X X _ X 
_ X _ _ _ _ 
_ _ X _ X _ 
X X _ _ _ _ 
X X _ X _ _ 
X X X X _ _ 

 

Cyclical 

IF P = OFF then FLIP 

 
X _ X _ X _ _ X X 
_ _ X _ _ _ X _ _ 
X _ X X _ X X _ _ 
_ X X X _ X _ _ _ 
_ X X _ X _ X X X 
_ _ X X X X _ X X 
X X X _ _ _ _ _ _ 

 

Cyclical 

 
5.1.2 Rule Combinations 
Using rules in combination with each other facilitates emergent 
agent behaviors and the resulting complex rhythmic output.  
While many combinations do result in complex behaviours, 
others produce rhythms similar to those generated by individual 
rules. The following chart shows rule combination that resulted 
in the production of simple cycling or recurring patterns. In 
these examples the rule numbers corresponds to subsumption 
layer ranks. 
 

Rules Applied Pattern Generated Behavior 

#1:   
IF P = OFF then 

ON 
 

#2:   
IF N = OFF then 

ON 

 
X X X X X _ 

 
Consistent 

#1:  
IF P = OFF then 

FLIP 
 

#2:  
   IF  N = OFF then 

ON 

 
X X X _ _ _ X X X X X 
_ _ _ _ _ X X X X X _ 
 

Cyclical 

 
Many rule combinations do result in the expression of emergent 
behavior by the agents. In such cases, the complex interactions 
between agents results in a period of transition as the pattern 
converges towards equilibrium. During this phase the rhythmic 
output from the system converges towards a repeating pattern. 
The rhythmic patterns generated by these rules are classified 
based on the length of an initial converging pattern and the 
length of subsequent cycling pattern as depicted here: 
 

Rules Applied Pattern Type Pattern Generated 

 
 
 
#1: IF P = OFF then Flip 
 
 
 

Converging 
 (36 Beats) 

 
_ X _ X X X 
X X X X _ _ 
_ _ _ _ _ X 
_ X _ X _ _ 
X X _ _ X _ 
_ _ X X X _ 
 

 
 
 
#2: IF P=N then FLIP Cycling 

(36 Beats) 

 
X _ _ X X X 
X _ X _ _ X 
X X X _ X _ 
_ X X X X _ 
X _ _ _ _ _ 
_ _ X _ X _ 

 
 
When multiple rules are combined together, the rhythms 
generated by the BeatBender system become increasingly 
complex. This results in longer converging patterns as well as 
longer cycling patterns. The cycling period for rhythms often 
becomes so long that the repetitions are indiscernible to human 
ears and patterns appear to transform continuously. Only 
through textual analysis are patterns discernable. An example of 
a pattern exhibiting this type of emergent behavior is generated 
using the following set of rules: 

Rule 1: TURN ON AGENT 
Rule 2: IF P = N then FLIP 
Rule 3: 0 IGNORE, 1 ON, 2 IGNORE, 3 REST  
Rule 4: IF STRIKES > 4 then OFF 
Rule 5: IF ACTIVEAGENTS > 3 then FLIP 
 

The converging pattern produced by the interaction of these 
rules has a length of 8,535 beats. The cycling pattern has a 
length of 29,852 beats. (An audio sample of this rhythm can be 
heard at www.aaronlevisohn.com/beatbender.)  
 
5.2 Aesthetics 
The aesthetic assessment of BeatBender is based on the 
perceived musicality of each rhythm in terms of both pattern 
complexity and instrumentation. The process of evaluation is 
iterative and involves comparisons between subsequently 
generated patterns.  The evaluation of a rhythm’s complexity is 
accomplished by listening for motifs within the pattern. While 
all of the rhythms do eventually converge to cycling patterns, 
the more interesting ones take time to reach equilibrium. During 
the convergent period of such rhythmic production, subtle shifts 
and transformations can be identified.  The shifts produce 
offsets of recurring patterns in a manner that allows musical 
phrases to repeat in non-predictable ways.  Many rhythms repeat 
musical phrases with only slight modifications such as the 
flipping of a single beat from ON to OFF or vice-a-versa. These 
transformations result in slowly evolving patterns that exhibit 
variability without collapsing to chaos. (An audio recording and 
visual example of a pattern with a motif exhibiting shifts and 
transformations can be seen at 
www.aaronlevisohn.com/beatbender.) 
 
In addition to identifying the complexity of the patterns 
produced by BeatBender, rhythms are also assessed for the 
aesthetic quality of their instrumentation. As described in 
section 4.3, drum sounds are set using particular rules within the 
subsumption layers. Having a separate set of rules for this 
purpose allows for the exploration of instrumentation to be 
undertaken separately from the rhythm generation itself. 
Exploring the aesthetic possibilities of a particular rhythm is 
accomplished by adjusting the sound identifier rules. These 
rules, which result from the interaction between all the agents, 
become increasingly complex as additional layer rules are 



applied. Due to this, the drum sound associated with a specific 
agent cannot be set, but alternate system configurations can be 
explored. Successful configurations result in a combination of 
drum sounds that appears to be generated by multiple drummers 
performing together. The instrumentation used for the final 
implementation of BeatBender was discovered by exploring 
numerous variations of the sound identifier rules in order to 
achieve musical output that best met these aesthetic criteria.  
 
6. CONCLUSION 
Computers have been used for decades as tools to assist in the 
creation of art. As new computational techniques are developed, 
artists are among the first to explore them. This often results in 
new and innovative applications of these techniques. As AI 
techniques have become more accessible, they too have been 
applied to the production of artworks. These new artworks 
demonstrate a conceptual shift in the way that artists envision 
their relationship with computers. Using AI techniques, it is now 
possible to create computational works that are capable of 
autonomous creative behavior, blurring the line between artist 
and tool. Works of this sort explore machine creativity and 
intelligence while simultaneously addressing issues relating to 
human consciousness. With both aesthetic and research 
purposes, these projects bridge the gap between art and science. 
Such artworks are called metacreations.  
 
This paper presents the development of a metacreation that uses 
the subsumption architecture to elicit emergent behavior. The 
work is comprised of six identical agents capable of enacting 
specific behaviors to change the overall state of the system. 
Despite the overall simplicity of the system, the interaction of 
these agents produces complex emergent behaviors that are 
expressed as rhythmic output from the system. The ability of the 
system to produce patterns of extreme complexity using a 
simple implementation model presents numerous possibilities 
for the exploration of machine creativity.  
 
While this paper presents the results of a successful initial 
evaluation of the BeatBender system, a more robust evaluation 
is planned for the future. Since drumming has its origins in 
human song and dance rituals, this next evaluation will assess 
BeatBender’s rhythmic output within a more natural human 
context. This evaluation will compare the rhythms generated by 
BeatBender to those produced by human performers. The results 
of this evaluation will help direct future work on the BeatBender 
project. 
 
This implementation of BeatBender demonstrates a new method 
for generating emergent rhythms using the subsumption 
architecture. The subsumption architecture provides an easy yet 
powerful method for directing the composition of rhythms using 
simple sets of rules. From an artistic perspective, these rules 
function as a compositional language that permits the user to 
express meaningful constraints that result in unexpectedly 
complex and aesthetically pleasing rhythmic patterns. Future 
implementations of BeatBender will expand the layer rules to 
develop behaviors that encode specific musical structures. This 
will be a preliminary step in a larger move to make the system 
fully interactive and ultimately capable of real-time 
collaboration with live performers.   
 

To listen to examples of the rhythms produced by the 
BeatBender system and to see visual representations of 
additional rhythmic patterns please visit 
www.aaronlevisohn.com/beatbender. 
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