
BeatBender:
Subsumption Architecture for Autonomous

Rhythm Generation

Aaron Levisohn
Simon Fraser University

250-13450 102 Ave.
 Surrey, British Columbia V3T 0A3

+1 604 782 7474

alevisoh@sfu.ca

Philippe Pasquier
Simon Fraser University

250-13450 102 Ave.
 Surrey, British Columbia V3T 0A3

+1 604 782 7474

pasquier@sfu.ca

ABSTRACT
BeatBender is a computer music project that explores a new
method for generating emergent rhythmic drum patterns using
the subsumption architecture. Rather than explicitly coding
symbolic intelligence into the system using procedural
algorithms, BeatBender uses a behavior-based model to elicit
emergent rhythmic output from six autonomous agents. From an
artistic perspective, the rules used to define the agent behavior
provide a simple but original composition language. This
language allows the composer to express simple and meaningful
constraints that direct the behavior of the agent-percussionists.
From these simple rules emerge unexpected behavioral
interactions that direct the formation of complex rhythmic
output. What is striking is that these rhythmic patterns, whose
complexity is beyond human grasp, are both musically
interesting and aesthetically pleasing. The output from the
system is evaluated using both subjective and objective criteria
to assess degrees of complexity, convergence, and aesthetic
interest.

Categories and Subject Descriptors
H.5.5 Sound and Music Computing: Systems

General Terms
Performance, Experimentation, Aesthetics

Keywords
Sound and Music, Rhythm, Generative Art, Metacreation,
Subsumption Architecture, Aesthetics

1. INTRODUCTION
The development of artificial intelligence (AI) techniques have
allowed artist to develop computational works that are capable
of autonomous creative behavior. Such artworks are now
commonly referred to as metacreations [1]. Unlike traditional
artistic methods in which the artist maintains control over the
final form and representation of their work, these new methods
are more open ended. The artist’s role in development of a
metacreation becomes that of the programmer, developing a
system that will ultimately produce the artwork itself.

The ability of computers to exhibit intelligent and creative
behaviors has been demonstrated through their use in solving
problems beyond human capabilities; they have produced
paintings [2] and music [3]; and they have outwitted the best
human chess players [4]. While questions remain about the
nature of intelligence and how machine intelligence differs from
biological intelligence, it is now an accepted fact that computers
can exhibit behavior that would be considered intelligent if
demonstrated by a human. The questions now being asked seek
to define the limits and possibilities of computational
intelligence.

Working with metacreations allows for the application of AI
techniques in unusual and interesting ways. By repurposing AI
techniques, developers of metacreations produce works that are
highly engaging and aesthetically pleasing. These explorations
also provide new methods for applying AI techniques that can
be utilized in scientific, economic, and entertainment
applications.

Metacreations have utilized various AI techniques in
accomplishing specific goals. Often, multiple AI techniques are
used collectively to engender greater complexity or creative
behavior. Artificial neural networks, autonomous agents,
cellular automata (CA), genetic algorithms/programming, as
well as various artificial life techniques have all been utilized in
the production of metacreations.

This paper presents a computer music project called BeatBender
that explores a new method for generating rhythmic drum
patterns using the subsumption architecture developed by
Rodney Brooks [5]. Rather than explicitly coding symbolic
intelligence into the system using procedural algorithms,
BeatBender uses a behavior-based model that facilitates
emergent expression. Subsumption architecture systems are
designed to respond to stimuli in the environment using a
hierarchical set of rules. Depending on the state of the
environment, different rules of varying complexity are invoked,
generating the behavioral output of the system. From an artistic
perspective, the rules used to define the agent behavior provide a
simple but original composition language. This language allows
the composer to express simple and meaningful constraints that
direct the behavior of the agent-percussionists. From these
simple rules emerge unexpected behavioral interactions that

direct the formation of complex rhythmic output. What is
striking is that these rhythmic patterns, whose complexity is
beyond human grasp, are both musically interesting and
aesthetically pleasing.

The BeatBender system is comprised of six autonomous agents,
each responsible for the production of one beat of every measure
in an ongoing rhythm. Each agent is designed to react
individually to a set of perceptions at different, but sequential,
points in time. The interaction between agents is determined by
rules which are encoded into the layers of the subsumption
architecture. The agents’ behaviors, which are determined by
their collective interaction, generate audio output in the form of
complex and aesthetically interesting rhythmic patterns. This
paper describes the development of the BeatBender system and
the explorations undertaken using the subsumption architecture
to design a multi-agent system capable of eliciting emergent
behavior.

2. BACKGROUND
While rhythm generation is not a new subject in computer
music, the use of the subsumption architecture as the foundation
for such a system has never been tried. The subsumption
architecture is well suited for rhythm generation since the
articulation of beats does not require any form of symbolic
representation. The intuitive nature of rhythm production has
been demonstrated by researchers studying the evolutionary
basis of human and cross-species rhythmic abilities [6]. Using
the subsumption architecture allows autonomous agents in a
closed system to exhibit emergent behavior through their
collective interaction. By prioritizing the interaction among
behaviors, the subsumption architecture is an ideal tool to model
the ways in which participants in a drum circle react and adapt
to each others’ distinct playing styles. This results in a process
of rhythm development that is both emergent and dynamic.

2.1 Subsumption Architecture
An agent is a computer system or component capable of
independent autonomous action [7]. Agents are self-directed
and perform actions within an environment in order to meet their
design objectives. A multi-agent system consists of a number of
agents that are capable of interacting to meet an individual or
collective goal. BeatBender is a multi-agent system in which
agents respond to each other’s behaviors in order to generate
rhythmic output. Rather than explicitly coding each agent’s
behavior ahead of time, BeatBender constrains the agents’
actions through the use of the subsumption architecture.

Figure 1: Subsumption Architecture

The use of the subsumption architecture as a means of eliciting
emergent behavior in robots was introduced by Rodney Brooks
in his seminal paper “Intelligence without Representation” [5]
Rather than utilizing explicitly programmed algorithmic
solutions, subsumption architecture systems focus on developing
sets of behaviors; these behaviors are implemented as layers,
with some layers given priority over others. Low level layers are
given the lowest priority and usually invoke non-critical
behaviors. Higher level layers generally invoke behaviors that
are more complex and often vital to the functioning of the
system (Figure 1). Specific layer behaviors are often selected
based on environmental data gathered using sensors; however
other data can be used as well.

While the subsumption architecture methodology has been
primarily utilized in the field of robotics it is equally applicable
to other endeavors in which emergent system behaviors are
desired. For example, Bryson et al used the architectures in the
development of a musical accompanist [8] and Nakashima and
Noda incorporated it into their design of intelligent agents
capable of playing soccer games [9]. While the subsumption
architecture has been applied in musical systems, it has been
solely toward the production of tonal output. BeatBender, uses
the subsumption architecture for the purpose of exploring
emergent rhythm generation.

2.2 Prior Work
As a metacreation, BeatBender positions itself within two
different disciplines. First, BeatBender must be situated among
works that explore rhythm generation. Second, it must be
situated among general electronic music applications that utilize
AI techniques.

Rhythm generation applications take various forms and serve a
variety of purposes. In general, most of these types of
applications are designed to produce rhythms as accompaniment
to a human performance. One example of this is Haile, the
anthropomorphic robotic percussionist designed by Weinberg
and Driscoll [10]. Haile is capable of both mimicking and
collaborating with a live human performer. One of Weinberg’s
primary goals was the implementation of a system that would
allow Haile to develop meaningful representations of music in
real-time. Haile uses complex analysis software to both establish
the characteristics of the live performance and to compute
rhythmic output. One of the benefits of subsumption architecture
is the significant reduction of computational load since there is
no need for symbolic representation. Complex behavior can be
elicited using simple behavior-based rules.

Several systems, including Eigenfeldt’s Kinetic-Engine [11],
utilize agents as a means of representing individual drummers
within a composition. Like BeatBender, Kinetic-Engine is a
metacreation and requires no real-time input from a user.
Kinetic-Engine uses networked agent architecture to emulate a
percussive ensemble. When activated, the system assigns
“personalities” to the agents who collectively personify the
human elements in a drum circle. Eigenfeldt’s agent system
requires a much higher level of complexity than systems
utilizing the subsumption architecture. Kinetic Engine uses a
social model of agent interaction to emulate the behavior of live
human performers. Agents “make eye contact” with one another

and, once connected, adjust to each other’s performance. In
addition, a special agent type called a conductor is used to
oversee high level organizational elements. The need for a
centralized agent model demonstrates the complexity of the
system. Eigenfeldt claims that this level of complexity is
necessary in order for a system to be “musically successful.” He
cites Brown’s work [12] with rhythm generating CA as evidence
of this. BeatBender explores emergence as an alternate means of
generating musically successful rhythmic output using a
decentralized agent model.

Pachet also developed a multi-agent system for generating and
evolving rhythms [13]. Pachet’s system has several similarities
to BeatBender including its use of a rule-based approach to
rhythm generation. However, unlike BeatBender’s rules which
are layered within the subsumption architecture, Pachet’s rules
explicitly direct patterns towards a particular type of known
structure (e.g. a rock beat). While Pachet’s rules provide a
greater degree of control and allow for the shaping of the
rhythms in much more direct ways, they do not provide an
opportunity for emergent behaviors to develop.

The use of multi-agents systems is only one of many AI
techniques that can be used in rhythm exploration. As noted
earlier, Brown explored the rhythm generating potential of
cellular automata (CA) [12]. One of the properties of CA is their
tendency to exhibit predictable types of behavior. In Brown’s
paper he describes various rules and techniques that he
uncovered during his exploration of linear CAs. His techniques
are categorized based on the resultant behavior. Some behaviors
include: rhythmic inversion, density thinning, evolving
inversion, and emergent cycles. Brown concludes that these
techniques result in patterns that lack musical meaning, and are
more “intellectually fascinating” than aesthetically valuable.
While BeatBender does not use CA explicitly, the linear
relationship between agents results in similar behavior.
However, there are two major differences between these types of
systems; First, CA cells are processed in parallel while
BeatBender’s agents are processed in series. Second,
BeatBender’s subsumption rules implicitly encode system
intelligence, allowing for the emergence of adaptive and
contextual behavior. CA rules, on the other hand, are hardcoded
prior to system activation, inhibiting responsive behavior.

Miranda [14] also used CA as the basis for a musical
composition system. Rather than focusing on rhythms, however,
he produced two systems capable of producing complete
instrumental pieces. CAMUS generates MIDI notes using 2
discrete CA models: The Game of Life and Demon Cyclic
Space. These two CAs work together to generate notes and
arrange them within a composition. Choasynth uses CA to
control a granular synthesis process based on the way electrical
current flows through capacitors. Each cell controls the
frequency of an oscillator that determines the makeup of a
particular sound. The complexity of Miranda’s systems is
necessary to overcome the predictable nature of CAs and to
allow for the development of rich musical output. Much of this
complexity, however, is required solely to add structure to
compositions and not in the process of musical generation.
Additionally, the techniques used in this process, such as bitwise
operations, utilize arbitrary mappings that do not rely on

computational intelligence. The subsumption architecture
alleviates the need for such arbitrary mappings by encoding
intelligence directly into the agents.

Other techniques including neural networks and genetic
programming/algorithms have also been applied to the
production of computationally generated rhythmic patterns.
Dolson describes the use of a neural network to both classify
and generate rhythmic patterns [15]. Neural network systems,
however, are not capable of emergent behavior since they are
only able to replicate and combine rhythms that they have
previously been trained to identify.

Tokui and Iba demonstrate the use of interactive evolutionary
computation (IEC) as a means of producing rhythms in their
CONGA system [16]. This system demonstrates the complexity
that is often required to design a system that produces musically
successful rhythmic output. The CONGA system uses a
combination of both genetic programming and genetic
algorithms to produce rhythms. BeatBender aims to accomplish
similar goals using the subsumption architecture which
alleviates the need for such a high degree of complexity.

3. SYSTEM DESCRIPTION
BeatBender is an autonomous rhythmic sequencer utilizing a
scalable multi-agent system. Scalability is desirable property of
any distributed system, as it is a good indicator of its
decentralized nature. In this paper, we limit ourselves to six
agents but this number can easily be adapted for different needs.
Each agent in the system is responsible for the generation of one
beat of every measure of continuous rhythmic output. At any
given time the agents can be in one of two states: ON or OFF.
During initialization all agents are set to OFF. When the system
is started, each agent is activated one at a time in sequence. An
agent’s state is determined by a set of conditional rules that are
applied at the exact moment of activation. These rules are
implemented using the subsumption architecture (presented in
section 2.1). If, after processing, the agent’s state is set to ON, a
drum sound is triggered; if the agent’s state is set to OFF no
sound is produced.

3.1 Design Considerations
Using the subsumption architecture for the BeatBender project
requires two distinct design phases: building the architecture,
and implementing the specific layers used by the subsumption
system. The initial phase involves the implementation of a
robust tool that allows for the exploration of various possible
layer rules. These rules become the basis for the behaviors that
each agent is capable of performing. This tool incorporates a
flexible interface for enabling and disabling behaviors as well as
adjusting layer hierarchies. Additionally, it includes a graphical
representation as well as a text output system to record the
specific output of the generated rhythmic patterns for analysis.

The second design phase utilizes the tool described above to
explore subsumption rules and layer configurations in order to
elicit emergent behavior. These behaviors were evaluated based
on the characteristics of the rhythmic output.

3.2 The BeatBender Agents
The Beatbender system consists of six independent agents, each
one capable of triggering audio events. The agents have states
which can be set to either ON or OFF. When the system is
activated, the state of each agent is computed in sequence. As
each agent is activated, the subsumption architecture determines
which behaviors to perform based on the current configuration
of the system and sets the agent’s state to be either on or off. At
any time multiple behaviors can be triggered, but only the one
on the highest subsumption layer is enacted to determine the
agent’s new sate. Once the new state has been set the system
updates the environment variables which include the state of
each agent as well as the total number of agents in the ON state.
If a particular agent’s state is set to ON then an audio event is
triggered and one of three drum sounds plays as determined by
the subsumption layer rules1.

Figure 2: The state of all six agents over three time steps.

The current activity of the system is visually depicted using a
display on the main interface (Figure 2). The display depicts all
six agents in a horizontal row. A yellow dot next to each agent
representation indicates when a particular agent is being
activated. The green dot next to each agent representation
indicates the current state of the agent. If the green dot is
present, then the agent is in its ON state indicating that it
triggered a drum sound on the last cycle. Figure 3 shows the
portion of the interface that displays each agent’s respective
state. In the illustration, the interface has been replicated three
times in order to show three sequential time steps.

Figure 3: The Rules Interface

3.3 Subsumption Layer Tools
As well as providing a visual representation of the state of each
agent in the system, the BeatBender software also includes an
interface to assist in the exploration of the system behavior
(Figure 3). This interface allows specific layers to be turned on
or off and for the rankings of individual layers to be adjusted.
Layers that are assigned lower ranks are subsumed by layers
with higher ranks. This forms the basis for the subsumption
architecture. Figure 3 shows the setting for three layers. In the
illustration, layers 1 and 3 are both activated. The interface
allows for up to 10 layers to be explored simultaneously.

3.4 Analysis Tools
The BeatBender interface also consists of a graphical
representation of the last six patterns played by the system. This

1 While only 3 sounds were used for this implementation of
BeatBender, there is no limit to the number of drum sounds that
can be used.

permits quick analysis of the rhythmic structure that the current
system configuration is generating (Figure 4). Each horizontal
row illustrates one cycle of the system with the state of each
agent indicated by a red dot. The vertical rows illustrate each
particular agent’s state over time. The first full cycle is
displayed in the top row with each subsequent cycle appearing
one level lower. After all six rows are filled the display return to
the top row.

Figure 4: Representation of current beat pattern

The interface also captures each rhythm as a text file. This
allows for more complex rhythmic structures to be identified
and analyzed. Rhythms are coded using an “X” for every ON
beat and a “_” for every rest (OFF beat). Using this scheme the
rhythm illustrated in Figure 5 would be output as:

X _ X _ _ X
_ X _ X X _
X _ X _ _ X
_ X _ X X _
X _ X _ _ X
_ X _ X X _

Both the layer tools and the analysis tools are particularly
important for working with a system utilizing the subsumption
architecture. In order for the system to produce emergent
rhythmic patterns, numerous configurations of behaviors and
rankings need to be tried. Each layer of the architecture must be
implemented, tested, and modified in order to identify
configurations that produce complex agent interactions, and
consequently, interesting rhythmic output. Typically, in
subsumption architecture systems, the layers are implemented
linearly, starting from the zeroth layer (the lowest level) and
ending with the highest level layer. For BeatBender, though, the
layer tool allows for the exploration of the various permutations
by providing a method for quickly reordering layer rules. In a
system such as this where the success of the behaviors is based
partially on aesthetic criteria, this interface was an essential
element.

The analysis tools were also essential for evaluating the output
produced by the system. While the success of the BeatBender
system was based partially on subjective criteria, the objective
analysis of the rhythms was accomplished by looking for
patterns within the rhythmic structures. The graphical
representation of the rhythms and, in particular, the logging of
each rhythm as text, enabled this quantitative analysis to be
done.

4. SYSTEM COMPONENTS
4.1 The Agents
A single Agent was developed to represent each of the drummers
in the system. This agent was instantiated six times to create the
full BeatBender model.

Figure 5: System Diagram

The Agent module acts as a container for the other components
that are required for the system to function. This includes the
Layers module and the Sound module. The Layers module
implements the entire subsumption architecture system and the
Sound module implements the audio playback system (Figure
5). Only the system responsible for controlling meter and timing
was implemented separately from the Agent Module. This
Timing system is responsible for the sequential activation of
each agent and controlling the rate at which the agents are
triggered.

4.2 System Goals
While applications that use the subsumption architecture to
control robots have specific system goals such as avoiding
objects, the goals for the generation of interesting rhythmic
patterns are less straightforward. The subjective nature of
assessing the quality of rhythmic patterns also presents
additional difficulties. Despite these challenges, specific criteria
were established to both subjectively and objectively assess the
quality of the rhythms generated by the system.

For BeatBender, the goal state is one in which the agents exhibit
emergent behaviors and the resulting rhythmic output displays
recognizable repeating rhythmic patterns. The rhythms produced
in such a scenario should not be radically different from one
time step to the next, but rather should slowly evolve while
maintaining some regularity. This development of rhythmic
patterns with these characteristics will be dependent upon the
rules implemented within the layers of the subsumption
architecture.

The rhythmic output from BeatBender is also evaluated on
aesthetic criteria. This assessment takes into account both the
quality of the rhythmic pattern produced by the system and the
instrumentation used to play it. The quality criterion assesses the
musicality of each rhythm as well as its perceived complexity.
This criterion assesses the aesthetics of the rhythm’s structure
regardless of how it is performed. The instrumentation criterion
evaluates the musicality of the particular drum sounds used to
play the rhythm. While the instrumentation does not affect the
beat pattern produced by the system, it does alter the listener’s
perception of the rhythmic structure. Successful instrumentation
will use the available drum sounds to produce the effect of
multiple drummers performing together. Rather than sounding
like a single rhythm being performed, the listener should
perceive several discrete rhythmic patterns, reflecting the
responsive nature of the agents within the system.

4.3 Agent Behaviors
Agents can perform only two types of behaviors: they can
change their state and they can select a drum sound to play.
When an agent implements a state change it can turn ON, turn
OFF, or FLIP its state. If, after processing, an agent is set to the
ON state then it also must select a drum sound to use for
playback. The current implementation of BeatBender provides
three sound options, each one a different variation of a tabla
drum: a long hit, a solid hit, and a low hit. These sounds were
specifically selected and sampled from live instruments in order
to produce a more natural rhythmic output.

4.4 Agent Perceptions
Each agent is continually updated with specific perceptions
which are used to determine which behaviors are enacted under
which conditions. Rather than utilizing the physical sensors that
a robot would use, BeatBender maintains a representation of the
current virtual “environment” using a set of perceptions that are
updated when an agent is activated. These perceptions include:
the agent’s state, the previous agent’s state, the next agent’s state
and the number of currently active agents in the system. Each
one of these perceptions is used to determine which behavior
should be enacted by the system by running them through a
series of conditional statements. These conditional statements
and the behaviors they enact are the basis for the subsumption
layers that determine agent behavior. Using agent perceptions in
this way replaces the need for the physical sensors that are used
in robotic subsumption systems.

4.5 Layers and Rules
Layers are made up of one or more rules. Each rule has an
antecedent and a consequence. The antecedent provides the
precondition necessary for a rule to be instantiated. Antecedents
use agent perceptions to test if specific preconditions have been
met. The consequence selects the specific behaviors to enact if a
precondition is met.

Each layer is also given a rank value. The rank value is used to
set the order in which rules are processed. Rules on layers with
higher rank values will supersede lower level rules. If the
preconditions for two rules are met simultaneously, only the rule
associated with the highest ranked layer will have its behaviors
enacted.

Rule antecedents can be of two kinds: general and specific.
Specific antecedents are designed to trigger behaviors only
under very specific conditions. Rules with these types of
antecedents tend to be given high rank values to ensure that they
are activated when a specific condition arises. Rules with
general antecedents, on the other hand, are usually given low
rank values since they will be triggered under numerous
conditions. Ranking rules this way ensures that these rules
behaviors will only be instantiated if all the other rules have
been passed over. A balance between general and specific
antecedents is necessary for the BeatBender system to take
advantage of the subsumption architecture and to develop
interesting rhythmic patterns.

The rules used in BeatBender can be divided into four
categories: Collective, Directed, Temporal and Undirected.

Collective rules use information about the total number of active
agents in the system. An example of this type of rule would be:
If there are more than 3 active agents then turn this agent on. In
order to make transcription of rules simpler this same rule can
be written in shorthand like this:

IF TOTALAGENTS > 3 THEN ON

Directed rules are based on information about an agent’s
specific neighbor or neighbors. An example of such a rule would
be: If the previous agent is on then flip this agent’s state. This
could be shorthanded as:

IF P = ON THEN FLIP

Temporal rules are based on information about a agent’s state
over time. These rules can either track the number of
consecutive ON and OFF states an agent has been in, or
alternately, the total number of times an agent has been in either
the ON or OFF state. An example of this type of rule is: If the
agent has been on for the last four cycles then turn it off. This
can be shorthanded to:

IF CONSECUTIVE > 4 THEN OFF

Undirected rules are based on information about an agent and its
neighbors but without reference to a specific agent’s state.
These rules are based on the techniques described by Brown in
his paper Exploring Rhythmic Automata [12] which are
themselves based off of Stephen Wolfram`s classification of CA
behavior in general. These types of rules take into account the
states of the current agent, previous agent and next agent (P, C,
and N) the sum of which is used to assess local activity. If an
agent is on then its value is 1; if it is off its value is 0. Unlike
other types of rules, Undirected rules often include multiple
conditions for each possible outcome (0 – 3) with each
triggering a different behavior. The possible behaviors in this
case are: turn on (ON), turn off (OFF), leave unchanged (U) or
ignore (I). It is important to note the significant difference
between leaving an agent unchanged and ignoring it. This
difference illustrates the functionality of the subsumption
architecture. When a condition statement results in the Ignore
behavior, no action is taken. This allows rules on lower layers to
get processed and to enact alternate behaviors. When a condition

statement results in the Unchanged behavior, however, an
agent’s state is set and lower level rules do not get processed.
An example of an Undirected rule is:

0 ON, 1 U, 2 I, 3 OFF

In this example, if the sum of the three agents’ states is 0 then
the agent is turned on. If the sum is 1 the agent’s state is
unchanged. If the sum is 2 the agent is ignored. If the sum is 3
the agent is turned off.

5. EVALUATION
BeatBender was evaluated on two distinct criteria: emergence
and aesthetics. The emergence criterion was assessed using
simple objective measures; the aesthetic criterion was assessed
using subjective measures.

5.1 Emergence
The objective evaluation of BeatBender was done to assess the
system’s ability to exhibit interesting emergent behavior. Since
BeatBender is comprised solely of agents capable of
independent action, emergence manifests through the interaction
between agent’s behaviors. The emergent characteristics of the
multi-agent system’s behavior are revealed in the rhythmic
pattern generated by the system as it converges towards
equilibrium. These characteristics exhibit themselves in the form
of convergent and recurrent structures within the generated
rhythmic patterns. A comparison of different rule
configurations can be done by evaluating the quality of
convergence based on two factors: the length of the converging
pattern and the length of the recurring pattern.

An analysis of the patterns produced by BeatBender was
completed using the visual representation of the rhythmic output
generated with the built-in assessment tools described in section
3.5. Rules were evaluated individually first, then in
combination.

 5.1.1 Individual Rules
The application of individual rules does not produce interesting
emergent behavior since isolated rules immediately set the
system into a state of equilibrium. Only though the interaction of
two or more local elements is the process of convergence made
visible. Individual rules do, however, produce rhythms that
reveal two distinct types of behavior: Consistent and Cyclical.
The multi-agent system is said to exhibit Consistent behavior if
each agent maintains the same state in every cycle. The multi-
agent system exhibits Cyclical behavior if the agents’ states
alternate on two or more subsequent cycles. The following chart
shows rules that produce both types of behaviors:

Rule Applied Pattern Generated Behavior

IF P=OFF then ON X _ X _ X _ Consistent

IF N = OFF then ON X X X X X _ Consistent

IF P=N then FLIP

X _ X _ X X
X X X X _ X
_ X _ _ _ _
_ _ X _ X _
X X _ _ _ _
X X _ X _ _
X X X X _ _

Cyclical

IF P = OFF then FLIP

X _ X _ X _ _ X X
_ _ X _ _ _ X _ _
X _ X X _ X X _ _
_ X X X _ X _ _ _
_ X X _ X _ X X X
_ _ X X X X _ X X
X X X _ _ _ _ _ _

Cyclical

5.1.2 Rule Combinations
Using rules in combination with each other facilitates emergent
agent behaviors and the resulting complex rhythmic output.
While many combinations do result in complex behaviours,
others produce rhythms similar to those generated by individual
rules. The following chart shows rule combination that resulted
in the production of simple cycling or recurring patterns. In
these examples the rule numbers corresponds to subsumption
layer ranks.

Rules Applied Pattern Generated Behavior

#1:
IF P = OFF then

ON

#2:
IF N = OFF then

ON

X X X X X _

Consistent

#1:
IF P = OFF then

FLIP

#2:
 IF N = OFF then

ON

X X X _ _ _ X X X X X
_ _ _ _ _ X X X X X _

Cyclical

Many rule combinations do result in the expression of emergent
behavior by the agents. In such cases, the complex interactions
between agents results in a period of transition as the pattern
converges towards equilibrium. During this phase the rhythmic
output from the system converges towards a repeating pattern.
The rhythmic patterns generated by these rules are classified
based on the length of an initial converging pattern and the
length of subsequent cycling pattern as depicted here:

Rules Applied Pattern Type Pattern Generated

#1: IF P = OFF then Flip

Converging
 (36 Beats)

_ X _ X X X
X X X X _ _
_ _ _ _ _ X
_ X _ X _ _
X X _ _ X _
_ _ X X X _

#2: IF P=N then FLIP Cycling

(36 Beats)

X _ _ X X X
X _ X _ _ X
X X X _ X _
_ X X X X _
X _ _ _ _ _
_ _ X _ X _

When multiple rules are combined together, the rhythms
generated by the BeatBender system become increasingly
complex. This results in longer converging patterns as well as
longer cycling patterns. The cycling period for rhythms often
becomes so long that the repetitions are indiscernible to human
ears and patterns appear to transform continuously. Only
through textual analysis are patterns discernable. An example of
a pattern exhibiting this type of emergent behavior is generated
using the following set of rules:

Rule 1: TURN ON AGENT
Rule 2: IF P = N then FLIP
Rule 3: 0 IGNORE, 1 ON, 2 IGNORE, 3 REST
Rule 4: IF STRIKES > 4 then OFF
Rule 5: IF ACTIVEAGENTS > 3 then FLIP

The converging pattern produced by the interaction of these
rules has a length of 8,535 beats. The cycling pattern has a
length of 29,852 beats. (An audio sample of this rhythm can be
heard at www.aaronlevisohn.com/beatbender.)

5.2 Aesthetics
The aesthetic assessment of BeatBender is based on the
perceived musicality of each rhythm in terms of both pattern
complexity and instrumentation. The process of evaluation is
iterative and involves comparisons between subsequently
generated patterns. The evaluation of a rhythm’s complexity is
accomplished by listening for motifs within the pattern. While
all of the rhythms do eventually converge to cycling patterns,
the more interesting ones take time to reach equilibrium. During
the convergent period of such rhythmic production, subtle shifts
and transformations can be identified. The shifts produce
offsets of recurring patterns in a manner that allows musical
phrases to repeat in non-predictable ways. Many rhythms repeat
musical phrases with only slight modifications such as the
flipping of a single beat from ON to OFF or vice-a-versa. These
transformations result in slowly evolving patterns that exhibit
variability without collapsing to chaos. (An audio recording and
visual example of a pattern with a motif exhibiting shifts and
transformations can be seen at
www.aaronlevisohn.com/beatbender.)

In addition to identifying the complexity of the patterns
produced by BeatBender, rhythms are also assessed for the
aesthetic quality of their instrumentation. As described in
section 4.3, drum sounds are set using particular rules within the
subsumption layers. Having a separate set of rules for this
purpose allows for the exploration of instrumentation to be
undertaken separately from the rhythm generation itself.
Exploring the aesthetic possibilities of a particular rhythm is
accomplished by adjusting the sound identifier rules. These
rules, which result from the interaction between all the agents,
become increasingly complex as additional layer rules are

applied. Due to this, the drum sound associated with a specific
agent cannot be set, but alternate system configurations can be
explored. Successful configurations result in a combination of
drum sounds that appears to be generated by multiple drummers
performing together. The instrumentation used for the final
implementation of BeatBender was discovered by exploring
numerous variations of the sound identifier rules in order to
achieve musical output that best met these aesthetic criteria.

6. CONCLUSION
Computers have been used for decades as tools to assist in the
creation of art. As new computational techniques are developed,
artists are among the first to explore them. This often results in
new and innovative applications of these techniques. As AI
techniques have become more accessible, they too have been
applied to the production of artworks. These new artworks
demonstrate a conceptual shift in the way that artists envision
their relationship with computers. Using AI techniques, it is now
possible to create computational works that are capable of
autonomous creative behavior, blurring the line between artist
and tool. Works of this sort explore machine creativity and
intelligence while simultaneously addressing issues relating to
human consciousness. With both aesthetic and research
purposes, these projects bridge the gap between art and science.
Such artworks are called metacreations.

This paper presents the development of a metacreation that uses
the subsumption architecture to elicit emergent behavior. The
work is comprised of six identical agents capable of enacting
specific behaviors to change the overall state of the system.
Despite the overall simplicity of the system, the interaction of
these agents produces complex emergent behaviors that are
expressed as rhythmic output from the system. The ability of the
system to produce patterns of extreme complexity using a
simple implementation model presents numerous possibilities
for the exploration of machine creativity.

While this paper presents the results of a successful initial
evaluation of the BeatBender system, a more robust evaluation
is planned for the future. Since drumming has its origins in
human song and dance rituals, this next evaluation will assess
BeatBender’s rhythmic output within a more natural human
context. This evaluation will compare the rhythms generated by
BeatBender to those produced by human performers. The results
of this evaluation will help direct future work on the BeatBender
project.

This implementation of BeatBender demonstrates a new method
for generating emergent rhythms using the subsumption
architecture. The subsumption architecture provides an easy yet
powerful method for directing the composition of rhythms using
simple sets of rules. From an artistic perspective, these rules
function as a compositional language that permits the user to
express meaningful constraints that result in unexpectedly
complex and aesthetically pleasing rhythmic patterns. Future
implementations of BeatBender will expand the layer rules to
develop behaviors that encode specific musical structures. This
will be a preliminary step in a larger move to make the system
fully interactive and ultimately capable of real-time
collaboration with live performers.

To listen to examples of the rhythms produced by the
BeatBender system and to see visual representations of
additional rhythmic patterns please visit
www.aaronlevisohn.com/beatbender.

7. REFERENCES
[1] M. Whitelaw, Metacreation: Art and Artificial Life, The
 MIT Press, 2006.
[2] H. Cohen, “The further exploits of Aaron, painter,”
 Stanford Hum. Rev., vol. 4, 1995, pp. 141-158.
[3] D. Cope, “Computer modeling of musical intelligence in
 EMI,” Computer Music Journal, vol. 16, 1992, pp. 69-83.
[4] D. Levy and M. Newborn, How computers play chess,
 Computer Science Press, Inc., 1991;
[5] Brooks, R.A., “Intelligence Without Representation,”
 Artificial Intelligence Journal, vol. 47, 1991, pp. 139-159.
[6] J. Bispham, “Rhythm in Music: What is it? Who has It?
 And Why?,” Music Perception, vol. 24, Dec. 2006, pp.
 125-134.
[7] Woolridge, M. and Jennings, N.R., “ Intelligent Agents:
 Theory and Practice,” Knowledge Engineering Review,
 vol. 10(2), 1995.
[8] J. Bryson, A. Smaill, and G.A. Wiggins, "The Reactive
 Accompanist: Applying Subsumption Architecture to
 Software Design," Research Paper 606, Dept. of
 Artificial Intelligence, Edinburgh, 1992.
[9] H. Nakashima and I. Noda, “Dynamic subsumption
 architecture for programming intelligent agents ,” Multi
 Agent Systems, 1998, pp. 190-197.
[10] G. Weinberg and S. Driscoll, “Robot-human interaction
 with an anthropomorphic percussionist,” Proc.of SIGCHI
 conf. on Human Factors in computing systems, Montréal,
 Québec, Canada: ACM, 2006, pp. 1229-1232;
[11] A. Eigenfeldt, “The Creation of Evolutionary Rhythms
 within a Multi-agent Networked Drum Ensemble,”
 Proc. Intern. Comp. Music Conf., Copenhagen: 2007.
[12] A.R. Brown, “Exploring Rhythmic Automata,”
 Applications of Evolutionary Computing, vol. Volume
 3449, 2005, pp. 551-556.
[13] F. Pachet, “Rhythms as emerging structures,” Proceedings
 of 2000 International Computer Music Conference, Berlin,
 ICMA, 2000.
[14] E.R. Miranda, “On the Music of Emergent Behavior: What
 Can Evolutionary Computation Bring to the Musician?,”
 Leonardo, vol. 36, 2003, pp. 55-59.
[15] M. Dolson, “Machine Tongues XII: Neural Networks,”
 Music and Connectionism, vol. 13, 1991.
[16] N. Tokui and H. Iba, “Music composition with interactive
 evolutionary computation,” GA2000. Proc. of
 the third International Conference on Generative Art,
 2000.

