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ABSTRACT 
A comparison is made between two systems of realtime sample 
selection using timbral proximity that has relevance for live 
performance and/or game design. Samples in large sample 
libraries are analysed for audio features (rms, spectral centroid, 
energy, flatness, and spectrum using a Bark auditory modeler), 
and this data is statistically analysed and stored. Two methods of 
organization are described: the first uses fuzzy logic to rate 
sample similarity, the second uses a self-organizing map. The 
benefits and detriments of each method are described.  

Categories and Subject Descriptors 
J.5 [Computer Applications]: Arts and Humanities – music. 

General Terms 
Performance, Design. 

Keywords 
Timbre, realtime systems, heuristics, self-organising maps. 

1. INTRODUCTION 
Performers involved in realtime electroacoustic music are often 
faced with choosing their sounds during performance. It is not 
unusual for these performers to have hundreds, if not thousands, 
of available samples from which to choose. Lacking the ability to 
audition audiofiles during performance, the performer is forced to 
remember the subtle difference between “acoustic bass 2” and 
“acoustic bass 2a”. Similarly, sound design for games may 
involve situations in which an initial sample needs to be followed 
with a similar timbre.  

Metadata is one solution to this problem, through the inclusion of 
a description of the sound within the file itself. There are two 
problems with metadata: firstly, the reliance is upon the 
description to be accurate and complete; secondly, long 
descriptions are not useful in performance, where instantaneous 
decisions must be made regarding which sample to choose. 
Therefore, we propose that techniques from machine learning can 

be used to help make the decision. 

A sample library is analysed, prior to performance, for a variety of 
features, including peak and RMS amplitude, brightness (spectral 
centroid), loudness (spectral energy), noisiness (spectral flatness), 
and spectrum (using the Bark scale auditory model spectrum 
analysis). Each sample’s analysis data is indexed by filename. In 
performance, this file is recalled, and its data can be interpreted in 
different ways, depending upon the needs of the performer. Two 
methods of organization are described: the first uses fuzzy logic 
operators to rate sample similarity; the second uses a self-
organizing map (SOM).  

Section 2 describes related work in realtime timbre analysis, and 
discusses how our research advances the state of the art; Section 3 
describes the analysis and preparation of the database prior to 
performance for both methods; Section 4 describes how the 
heuristic method is used, and how it can be used in performance; 
Section 5 describes how the self-organizing map is created, and 
how it can be used in performance; Section 6 compares the two 
methods; Section 7 offers our conclusions and future directions. 

2. RELATED WORK 
2.1 Realtime Timbre Recognition 
Timbre is finally available as a control structure for realtime 
music. Early work in this area was done by Lippe [1], who used 
Max and the IRCAM Signal Processing Workstation (ISPW) to 
analyse timbre in performance.  

More recently, Hsu [2] used realtime timbre recognition of 
saxophone to guide an interactive system. Ciufo [3] used Jehan’s 
MSP external analyzer~ [4] to analyse incoming audio, which in 
turn influenced processing. Similarly, Rebelo and Renaud [5] used 
the same object in the BLISS laptop improvisation ensemble to 
analyse ensemble member’s spectral data, information that is 
shared amongst the ensemble. Jehan’s MSP external analyzer~, as 
well as other realtime MSP analysis tools, are allowing composers 
to explore the potential of timbre as a control element during 
performance.  

The recent appearance of Music Information Retrieval (MIR) 
algorithms in ChucK [6] will, no doubt, precipitate many new 
realtime works that involve timbral recognition, previously only 
possible using non-realtime tools. 

2.2 Timbre Organisation  
The Music Information Retrieval (MIR) community has done 
considerable research into timbral organization, specifically in 
determining similarity between songs [7]. 
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Cano and Koppenberger [8] describe a system which classifies a 
huge sound effects database discovering timbral similarities 
between sounds, and labeling these sounds with similar tags. 
Pampalk, Dixon, and Widmer [9] describe a system with 
combines descriptors derived from audio analysis with meta-
information to create different views of a music collection, using 
an aligned self-organising map. This builds upon work by Logan 
[10] who uses a spectrum-based similarity measure to create 
playlists of similar songs, and Auccounturier and Pachet [11], 
who use a spectrum-based similarity measure to find similarities 
between songs. Lübbers [12] describes a system called “The Sonic 
SOM”, which uses a SOM that does not function in realtime, to 
help users understand music collections. Knees et al. present 
another system [13] that uses text-retrieval methods to find meta-
data extracted from the Web in order to discover song similarities. 

2.3 Differences from previous work 
The work described here is focusing upon realtime selection of 
samples based on their timbral properties, and is thus different 
from most previous timbral analysis research. Furthermore, it does 
not use meta-data to organize databases, allowing it more 
flexibility.  

As the authors are both composers, the intentions are also 
markedly different than MIR research: rather than attempting to 
navigate a search space and return an exact match, the interest is 
in similar timbres, rather than specific matches. For example, in 
cases where the software is used to respond to live performer 
input in order to select similar timbres, the system response 
should not necessarily be limited to exact sample matches (i.e. 
timbale samples for timbale input), but timbres that have “similar” 
(or related) spectral content. 

While the entire system is not realtime, in that the sample 
database must initially be analysed (see Section 3.2) and, in the 
case of method 2, the SOM must be trained (see Section 5.2), the 
final product was created for performance use.  

Lastly, the methods described here were coded in Max/MSP, and 
are intended to present useable tools for composers and 
performers, for use in performance. Comparing two different 
methods will hopefully allow others to incorporate these methods, 
or adjust them to suit their own needs 

3. SAMPLE ANALYSIS 
3.1 Sample libraries 
Three different sample libraries were used in this research: a 
library of 1551 individual percussion samples; 379 Apple 
GarageBand loops, including pitched instrumental loops as well 
as unpitched percussion loops; 83 soundscape recordings, 
averaging approximately thirty seconds in duration. 

3.2 Sample Analysis 
Analysis of individual soundfiles was done using a MaxMSP 
patch using Jehan’s analyzer~ object to derive the following 
feature data for each sample: 
- brightness (spectral centroid) 
- loudness (spectral energy) 
- noisiness (spectral flatness) 
- 24 band Bark analysis 

Additionally, peak amplitude and rms analysis was done using the 
standard MSP objects peakamp~ and average~, while a frequency 
analysis was made using fiddle~. 

Statistical analysis was done on this data over the course of the 
sample’s duration, in order to determine the maximum, mean, and 
standard deviation for each feature. 

Feature data is stored in the following format: 

[Sample name] [duration in ms] [feature_max] 
[feature_mean] [feature_stddev] … 

The maximum, mean, and standard deviation for the three highest 
Bark bands and their amplitudes are stored (see Table 1).  

Each sample library’s complete analysis file is written to disk as 
text, and is read prior to performance. 

3.2.1 Bark Analysis 
The Bark analysis [14] is auditory modeler that provides 
perceptually meaningful data, corresponding to the intensity of the 
first 24 critical bands of hearing. Furthermore, when compared to 
standard FFTs, the analysis itself already provides useful data 
reduction. 

Table 1. Maximum Bark amplitudes for the three most intense 
bands of Asian Gamelan 04. 

Band Mean Amplitude 

17 0.892 

16 0.867 

7 0.789 

4. METHOD 1 DESCRIPTION 
The first method for timbral selection is based upon a notion of 
spectral peaks within the Bark analysis. Each sample’s three 
highest Bark bands - determined through maximum amplitude - 
are stored, and similarity is based upon the closeness of any two 
sample’s Bark bands to one another. Fuzzy logic comparison 
operators [15] are used to determine closeness. 

This method has been tested in an existing realtime generative 
rhythm composition system [16], and is more fully described 
elsewhere [17]. It works well for short percussion samples, since 
it does not take into account time-varying spectra. 

As well as the analysis file described in Section 3.2, Method 1 
requires two additional arrays to be created prior to performance. 

An indexed array is created (sample_DB) that points to individual 
sample paths. A second array (bands_by_sample) is also created at 
this time, in which pointers to sample_DB indices are sorted by 
Bark energy bands.  

For example, if a sample’s Bark bands are (2 5 7), the sample 
number is entered into bands_by_sample at all three indices. This 
allows access to all samples that have high energy in a specific 
band. 

4.1 Realtime Implementation 
In performance, an input vector representing three Bark bands is 
passed to bands_by_sample, the array consisting of pointers to 
samples that contain specific bands. Thus, given an input vector of 



(3 4 6), all samples whose three highest bands contain any of 
those values, is returned. The actual bands for each sample in this 
list is then compared to the input vector, and the number of direct 
matches is used to sort the list. 

This algorithm works only if the input vector matches that of 
samples within the database, which is not always the case. 
Furthermore, only exact matches are returned, rather than similar 
matches. For this reason, fuzzy comparisons are made, by 
including adjacent bands in the search. 

4.1.1 Fuzzy logic comparisons 
A “fuzzy list” is created around the input vector by including 
adjacent bands: for example, given an input vector of (5 9 14), the 
following fuzzy list is generated: (4 6 8 10 13 15). Direct matches 
are summed; matches to the fuzzy list are summed and scaled by 
0.66 (a hand-tuned value that created the ordering in Table 2) and 
the result normalized to be between 0 and 1 to create a closeness 
rating (see Table 2). 

Table 2. Closeness ratings based upon matching bands 

Direct matches Fuzzy matches Score 
3 0 1.0 
2 1 0.89 
1 2 0.77 
2 0 0.67 
0 3 0.66 
1 1 0.55 
1 0 0.33 
0 2 0.44 
0 1 0.22 

The inclusion of adjacent bands increases the number of samples 
to test. Incrementing through the list, in order, and selecting 
samples until the desired number is reached, would consistently 
create the same results, given the same input vector. In the case of 
the generative rhythm software, this is not a desired compositional 
choice, where, instead, different results are returned given the 
same input values. Therefore, the sample list is incremented 
randomly, until the desired number of selections is made. 

4.2 Realtime applications 
One possible application for this method is the selection of 
samples that are similar (or dissimilar) to timbres performed live. 
Incoming percussion timbres can be analysed to derive the 3 most 
intense Bark bands, and this input vector used to derive a set of 
similar samples. 

Another application (used in the generative rhythm software) 
would be to select an approximate spectral bandwidth, from which 
the software can use Gaussian probabilities to generate a random 
input vector (see Figure 3).   

 
Figure 3. Defining a spectral band from which to choose a 

sample. 

4.3 Search Heuristics 
Since the search space can contain several hundred items, even 
when limited by using the pre-sorted bands_by_sample array, it 
was found that evaluating it in its entirety (using a 16-nearest 
neighbor implementation) took too long in performance, often 
several seconds. Therefore, a heuristic algorithm was created to 
find enough (16) acceptable solutions within an acceptable 
amount of time (less than 1500 ms). 

When the randomly incremented search first begins, only those 
ratings above 0.66 are acceptable; after 250 ms, this is enlarged to 
include samples above 0.65, and after 1000 ms, it is enlarged to 
include 0.55 and above. During the search, results are added to the 
samples list and loaded, immediately available for performance. 

4.4 Dissimilarity 
Choosing dissimilar timbres to a given Bark set is simply a matter 
of creating an inverse probability vector around the three bands, 
then choosing three new bands using quantile probabilities from 
this vector, and finally searching for timbres with the new bands. 
   If the inverse selected bands are derived only once prior to 
selection, the resulting timbres will all be similar (since they share 
the same bands); however, the same inverse probability vector can 
generate a different set after each sample selection. This would 
result in each sample being dissimilar to the original, yet with a 
likelihood of dissimilarity within the new sample groups. 

5. METHOD 2 DESCRIPTION 
5.1 Self-Organizing Map 
The second method for timbral selection uses a self-organizing 
map, or SOM [18]. Analysis data is clustered automatically by the 
SOM, according to similarities. Although any group of features 
can be used to compute similarities, the strength of this method 
relies upon the 2D visualisation of the resulting organisation (see 
Section 5.4). 

5.2 Generation of the Self-Organizing Maps 
A self-organizing map was implemented in MaxMSP to create a 
two dimensional representation of the sample database. SOMs are 
a type of artificial neural network using a neighborhood function 
so as to reflect feature proximity in a topologic manner.  

For purposes of comparison to method 1, the input vector 
consisted of a sample’s 3 highest Bark bands’ numbers, between 0 
and 23; however, the input vector can easily be changed to use 
any feature data, and be of any size (see Section 5.4). The 
visualization map was a 25 by 25 Jitter matrix, representing the 
625 individual nodes (neurons), with the 3 weights of each node 
(one per band) being mapped to RBG values. The grid itself is 
toroidal, in that opposite edges are connected.  

5.2.1 Training 
Each node’s weights are initialized to random values between 0 
and 1. The number of training iterations (ti) was defined as 10,000 
for the sample database of 1,551 items; the initial neighborhood 
size (ins) was half the size of the map: 12 nodes, in every 
direction. The initial learning rate was set to 1., and decreased at a 
logarithmic rate at each training iteration (t) to produce the 
learning rate (lr) using the following function: 

lr (t) = log 10 (t / ti)                                   (1) 



Similarly, the neighborhood size (ns) decreased at a logarithmic 
rate: 

ns (t) = log100 ( t / ins)                                   (2) 

At each iteration, a training example, chosen randomly from the 
database, is fed to the network, and the Euclidean distance to all 
weight vectors computed. The winning vector, (the best matching 
unit, or BMU) is the node with the weight vector most similar to 
the vector of the input instance. 

The weights of the BMU and those nodes in the neighborhood are 
then adjusted towards the input vector. The differences between 
their current weight and the input vector are multiplied by the 
weight scaling function (ws), and then added to the original 
weights: 

ws = lr / (ns2 + 1)                                   (3) 

Self-organisation initially takes place on the global scale (since 
the initial neighborhood is the entire map), whereas over time, the 
neighborhood shrinks to what is eventually a single node, and the 
weights converge to local estimates. 

 

Figure 1. An example visualization of the SOM of the 
percussion sample library.  

Once training is complete, the SOM will display those samples 
that are similar to one another in close proximity (see Figure 1). 
The actual colours displayed relate to the input vector (the 3 most 
intense Bark bands): in this case, the dark colours represent those 
samples in which all three Bark bands are low; the light colours 
represent those samples in which all three Bark bands are high; 
those that are closer to one primary colour represent samples 
whose Bark bands are spread out - i.e. a given Bark band vector of 
(17 3 5) will be bright red. 

5.2.2 Mapping 
Once training is complete, it is possible to directly associate 
individual nodes and input vectors. The database was incremented 
through in its entirety (one additional epoch), and fed to the SOM, 
with each BMU’s sample number being stored in a separate array.  

For the SOM shown in Figure 1, only 52% of the nodes had direct 
associations; however, of those with associations, the mean 
number of associations was 4.85, with a maximum of 139 sample 
files per node.  This duplication of associations resulted from 
samples within the database having essentially identical data (i.e. 
the 3 most intense Bark bands). See Section 5.4 for a more 
productive use of the SOM. 

 
Figure 2. The associated SOM from figure 1, displaying the 

unassociated neurons as black.  
The SOM can also be visualized to only show the direct 
associations, with non-associated nodes remaining black; thus, 
this visualization shows potential clustering of data (see Figure 2). 
Note, for example, the relative isolation of the two bright red 
squares in the bottom right, which signifies few similarities within 
the database to those samples. Compare this to the clusters of 
white squares at the extreme bottom right (which also wrap 
around to the top of the map): this signifies a clustering of similar 
samples within the database. 

5.3 Realtime Implementation 
An obvious benefit of using a SOM is its ability to visualize 
similarities within a database. The most practical realtime 
implementation for a SOM is to allow the user to click on the 
visual map, and derive the appropriate association(s) from the 
database. This is a simple matter of converting the <x,y> mouse 
selection coordinates into an index into the association array. 
Using the post-learning associative matrix (Figure 2), which 
clearly displays learnt associations, only those items in the 
database that directly correlate to the visual display will be 
returned. 

5.4 Choice of features to display 
As with any SOM, the effectiveness of the visualization is in the 
choice of features to display. It was found that the best features to 
choose were those that had significant differences within the 
database.  

For example, Figure 4 displays the soundscape database, using the 
standard deviation over the sample’s duration, of brightness, 
loudness, and noise. Thus, those squares that display more red are 
associated with samples that have more dynamic frequency 
(spectral centroid) change; those squares that display more green 
have more variation in their spectral energy; those squares that 
display more blue have more dynamic change in their spectral 
flatness.  



 
Figure 4. SOM visualizing the soundscape database, using 
standard deviation of brightness, loudness, and noise, after 

three epochs. Since the database has fewer items, the matrix 
was reduced to 10 x 10. 

Figure 5 displays the selected GarageBand loop database, using 
mean brightness, standard deviation of brightness, and mean 
frequency. In this case, those squares that are dark contain low 
frequencies, and have little change in their spectral centroid (i.e. 
the bass samples); those squares that are yellow have higher 
spectral energy, with dynamic spectral change (i.e. the percussion 
samples). 

 
Figure 5. SOM visualizing the GarageBand loop database, 

using mean and standard deviation for brightness, and mean 
frequency.  

5.5 Larger feature sets 
Since the Bark analysis produces 24 discrete intensity values, it 
was possible to train the SOM using all 24 values as an input 
vector. Using the GarageBand loops, after 64 epochs (100,000 
training iterations), the finer delineations between datum allowed 
more associations to be made. In the case of Figure 6, while only 
46% of the squares had direct sample associations after 1 epoch, 
over 82% had associations after 64 epochs (see Fig. 6). 

Visualizing 24 inputs in 2 dimensions required mapping the 24 
weights of each node to the three RGB values. The averages over 
8 bands’ intervals were used. As a result, red squares indicate 
energy primarily in low bands; greens indicate energy in the 
midrange bands, and blues indicate energy in the high bands. 

 

 

  
Figure 6. SOM visualizing 24 Bark bands of GarageBand 

loops, using mean amplitude (left) and the associative SOM, 
displaying black for non-associated nodes (right) 

5.6 Realtime applications 
If was found that the most effective use of SOMs in performance 
was to display several visualizations at once, allowing the user to 
make selections in one or more of the maps, then correlating the 
resulting selections. For example, using one SOM to display 
temporal information (such as Figure 4), and one to display 
frequency content, it is possible to select those items from the 
database that are associated with both selections. 

Another useful application was to draw paths through the 
visualized data, which could be interpreted over time. For 
example, using the visualization presented in Figure 4, a path was 
drawn from the top left through the bottom middle, which was 
interpreted over a ten minute performance. During this time, 
samples could be automatically selected, beginning with dynamic 
frequency change, and ending with those with dynamic noisiness.  

6. COMPARISON 
It was found that both methods were useful, each offering 
benefits, and detriments, that need to be considered for the 
specific performance requirements. 

6.1 Benefits to Method 1 
Because the fuzzy logic system uses heuristics, enough acceptable 
solutions will always be found. In cases where a specific number 
of solutions is required (i.e. agent-based performers), this is of 
great benefit. 

6.2 Detriments to Method 1 
Although acceptable solutions will always be found, depending 
upon the input criteria, the level of acceptability can vary greatly. 
Since this method does not visualize the database, it is possible to 
define criteria which does not exist within the database. This is 
especially true if the database is relatively small. 

6.3 Benefits to Method 2 
SOMs visualize the actual database, which can influence the 
design of the database itself; for example, if not enough high 
frequency samples are present, the SOM can display this, and 
adjustments can be made. 

Multiple SOMs can be used to display different features, and 
different features can even be visualized within a single SOM. In 
fact, SOMs are extremely flexible in their ability to display 
similarities over any kind of data. 



Perhaps the greatest benefit of SOMs to realtime performers is the 
fact that no actual calculations - other than conversion of mouse 
location to database indices - is necessary: all the “heavy-lifting” 
is “front-loaded”. 

6.4 Detriments to Method 2 
Although SOMs allow easy visualization, it is not immediately 
clear what is being visualized; for example, knowing what a red 
pixel represents, as opposed to a blue, requires an understanding 
of the analysis itself. 

Since SOMs involve time-consuming training, they are not 
realtime, and so cannot display any new data.  

Lastly, there is no easy way (at least compared to point and click) 
of selecting a range of selections or associations. In other words, 
the SOM (as discussed here) does not display the number of 
associations behind any square, and thus guaranteeing a certain 
number of selections (see Section 6.1) is more difficult. 

7. CONCLUSIONS 
We have described two different methods for realtime sample 
selection based upon timbral properties and similarity within large 
databases of samples. Both methods offer different benefits to the 
laptop performer, and both methods can be implemented within 
MaxMSP. 

Two future directions are being currently investigated. In the first 
case, adding new samples to the database requires their analysis, 
and, in the case of method 2, retraining the SOM. This retraining 
could be overcome by borrowing node locations from similarly 
rated samples. In the second case, clustering algorithms could be 
incorporated within the SOM so as to position the associated 
nodes closer together and thus generate Islands of similarity [9]. 

This software, along with the mentioned generative rhythm 
software, was created in Max/MSP, and is available at the first 
author’s website: [www.sfu.ca/~eigenfeldt/research.html]. 
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