
Realtime Sample Selection Based Upon Timbral Similarity:
A Comparison Between Two Methods

Arne Eigenfeldt
School for the Contemporary Arts

Simon Fraser University
Burnaby, Canada

Telephone number, incl. country code

arne_e@sfu.ca

Philippe Pasquier
School of Interactive Arts and Technology

Simon Fraser University
Burnaby, Canada

Telephone number, incl. country code

pasquier@sfu.ca
ABSTRACT
A comparison is made between two systems of realtime sample
selection using timbral proximity that has relevance for live
performance and/or game design. Samples in large sample
libraries are analysed for audio features (rms, spectral centroid,
energy, flatness, and spectrum using a Bark auditory modeler),
and this data is statistically analysed and stored. Two methods of
organization are described: the first uses fuzzy logic to rate
sample similarity, the second uses a self-organizing map. The
benefits and detriments of each method are described.

Categories and Subject Descriptors
J.5 [Computer Applications]: Arts and Humanities – music.

General Terms
Performance, Design.

Keywords
Timbre, realtime systems, heuristics, self-organising maps.

1. INTRODUCTION
Performers involved in realtime electroacoustic music are often
faced with choosing their sounds during performance. It is not
unusual for these performers to have hundreds, if not thousands,
of available samples from which to choose. Lacking the ability to
audition audiofiles during performance, the performer is forced to
remember the subtle difference between “acoustic bass 2” and
“acoustic bass 2a”. Similarly, sound design for games may
involve situations in which an initial sample needs to be followed
with a similar timbre.

Metadata is one solution to this problem, through the inclusion of
a description of the sound within the file itself. There are two
problems with metadata: firstly, the reliance is upon the
description to be accurate and complete; secondly, long
descriptions are not useful in performance, where instantaneous
decisions must be made regarding which sample to choose.
Therefore, we propose that techniques from machine learning can

be used to help make the decision.

A sample library is analysed, prior to performance, for a variety of
features, including peak and RMS amplitude, brightness (spectral
centroid), loudness (spectral energy), noisiness (spectral flatness),
and spectrum (using the Bark scale auditory model spectrum
analysis). Each sample’s analysis data is indexed by filename. In
performance, this file is recalled, and its data can be interpreted in
different ways, depending upon the needs of the performer. Two
methods of organization are described: the first uses fuzzy logic
operators to rate sample similarity; the second uses a self-
organizing map (SOM).

Section 2 describes related work in realtime timbre analysis, and
discusses how our research advances the state of the art; Section 3
describes the analysis and preparation of the database prior to
performance for both methods; Section 4 describes how the
heuristic method is used, and how it can be used in performance;
Section 5 describes how the self-organizing map is created, and
how it can be used in performance; Section 6 compares the two
methods; Section 7 offers our conclusions and future directions.

2. RELATED WORK
2.1 Realtime Timbre Recognition
Timbre is finally available as a control structure for realtime
music. Early work in this area was done by Lippe [1], who used
Max and the IRCAM Signal Processing Workstation (ISPW) to
analyse timbre in performance.

More recently, Hsu [2] used realtime timbre recognition of
saxophone to guide an interactive system. Ciufo [3] used Jehan’s
MSP external analyzer~ [4] to analyse incoming audio, which in
turn influenced processing. Similarly, Rebelo and Renaud [5] used
the same object in the BLISS laptop improvisation ensemble to
analyse ensemble member’s spectral data, information that is
shared amongst the ensemble. Jehan’s MSP external analyzer~, as
well as other realtime MSP analysis tools, are allowing composers
to explore the potential of timbre as a control element during
performance.

The recent appearance of Music Information Retrieval (MIR)
algorithms in ChucK [6] will, no doubt, precipitate many new
realtime works that involve timbral recognition, previously only
possible using non-realtime tools.

2.2 Timbre Organisation
The Music Information Retrieval (MIR) community has done
considerable research into timbral organization, specifically in
determining similarity between songs [7].

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Cano and Koppenberger [8] describe a system which classifies a
huge sound effects database discovering timbral similarities
between sounds, and labeling these sounds with similar tags.
Pampalk, Dixon, and Widmer [9] describe a system with
combines descriptors derived from audio analysis with meta-
information to create different views of a music collection, using
an aligned self-organising map. This builds upon work by Logan
[10] who uses a spectrum-based similarity measure to create
playlists of similar songs, and Auccounturier and Pachet [11],
who use a spectrum-based similarity measure to find similarities
between songs. Lübbers [12] describes a system called “The Sonic
SOM”, which uses a SOM that does not function in realtime, to
help users understand music collections. Knees et al. present
another system [13] that uses text-retrieval methods to find meta-
data extracted from the Web in order to discover song similarities.

2.3 Differences from previous work
The work described here is focusing upon realtime selection of
samples based on their timbral properties, and is thus different
from most previous timbral analysis research. Furthermore, it does
not use meta-data to organize databases, allowing it more
flexibility.

As the authors are both composers, the intentions are also
markedly different than MIR research: rather than attempting to
navigate a search space and return an exact match, the interest is
in similar timbres, rather than specific matches. For example, in
cases where the software is used to respond to live performer
input in order to select similar timbres, the system response
should not necessarily be limited to exact sample matches (i.e.
timbale samples for timbale input), but timbres that have “similar”
(or related) spectral content.

While the entire system is not realtime, in that the sample
database must initially be analysed (see Section 3.2) and, in the
case of method 2, the SOM must be trained (see Section 5.2), the
final product was created for performance use.

Lastly, the methods described here were coded in Max/MSP, and
are intended to present useable tools for composers and
performers, for use in performance. Comparing two different
methods will hopefully allow others to incorporate these methods,
or adjust them to suit their own needs

3. SAMPLE ANALYSIS
3.1 Sample libraries
Three different sample libraries were used in this research: a
library of 1551 individual percussion samples; 379 Apple
GarageBand loops, including pitched instrumental loops as well
as unpitched percussion loops; 83 soundscape recordings,
averaging approximately thirty seconds in duration.

3.2 Sample Analysis
Analysis of individual soundfiles was done using a MaxMSP
patch using Jehan’s analyzer~ object to derive the following
feature data for each sample:
- brightness (spectral centroid)
- loudness (spectral energy)
- noisiness (spectral flatness)
- 24 band Bark analysis

Additionally, peak amplitude and rms analysis was done using the
standard MSP objects peakamp~ and average~, while a frequency
analysis was made using fiddle~.

Statistical analysis was done on this data over the course of the
sample’s duration, in order to determine the maximum, mean, and
standard deviation for each feature.

Feature data is stored in the following format:

[Sample name] [duration in ms] [feature_max]
[feature_mean] [feature_stddev] …

The maximum, mean, and standard deviation for the three highest
Bark bands and their amplitudes are stored (see Table 1).

Each sample library’s complete analysis file is written to disk as
text, and is read prior to performance.

3.2.1 Bark Analysis
The Bark analysis [14] is auditory modeler that provides
perceptually meaningful data, corresponding to the intensity of the
first 24 critical bands of hearing. Furthermore, when compared to
standard FFTs, the analysis itself already provides useful data
reduction.

Table 1. Maximum Bark amplitudes for the three most intense
bands of Asian Gamelan 04.

Band Mean Amplitude

17 0.892

16 0.867

7 0.789

4. METHOD 1 DESCRIPTION
The first method for timbral selection is based upon a notion of
spectral peaks within the Bark analysis. Each sample’s three
highest Bark bands - determined through maximum amplitude -
are stored, and similarity is based upon the closeness of any two
sample’s Bark bands to one another. Fuzzy logic comparison
operators [15] are used to determine closeness.

This method has been tested in an existing realtime generative
rhythm composition system [16], and is more fully described
elsewhere [17]. It works well for short percussion samples, since
it does not take into account time-varying spectra.

As well as the analysis file described in Section 3.2, Method 1
requires two additional arrays to be created prior to performance.

An indexed array is created (sample_DB) that points to individual
sample paths. A second array (bands_by_sample) is also created at
this time, in which pointers to sample_DB indices are sorted by
Bark energy bands.

For example, if a sample’s Bark bands are (2 5 7), the sample
number is entered into bands_by_sample at all three indices. This
allows access to all samples that have high energy in a specific
band.

4.1 Realtime Implementation
In performance, an input vector representing three Bark bands is
passed to bands_by_sample, the array consisting of pointers to
samples that contain specific bands. Thus, given an input vector of

(3 4 6), all samples whose three highest bands contain any of
those values, is returned. The actual bands for each sample in this
list is then compared to the input vector, and the number of direct
matches is used to sort the list.

This algorithm works only if the input vector matches that of
samples within the database, which is not always the case.
Furthermore, only exact matches are returned, rather than similar
matches. For this reason, fuzzy comparisons are made, by
including adjacent bands in the search.

4.1.1 Fuzzy logic comparisons
A “fuzzy list” is created around the input vector by including
adjacent bands: for example, given an input vector of (5 9 14), the
following fuzzy list is generated: (4 6 8 10 13 15). Direct matches
are summed; matches to the fuzzy list are summed and scaled by
0.66 (a hand-tuned value that created the ordering in Table 2) and
the result normalized to be between 0 and 1 to create a closeness
rating (see Table 2).

Table 2. Closeness ratings based upon matching bands

Direct matches Fuzzy matches Score
3 0 1.0
2 1 0.89
1 2 0.77
2 0 0.67
0 3 0.66
1 1 0.55
1 0 0.33
0 2 0.44
0 1 0.22

The inclusion of adjacent bands increases the number of samples
to test. Incrementing through the list, in order, and selecting
samples until the desired number is reached, would consistently
create the same results, given the same input vector. In the case of
the generative rhythm software, this is not a desired compositional
choice, where, instead, different results are returned given the
same input values. Therefore, the sample list is incremented
randomly, until the desired number of selections is made.

4.2 Realtime applications
One possible application for this method is the selection of
samples that are similar (or dissimilar) to timbres performed live.
Incoming percussion timbres can be analysed to derive the 3 most
intense Bark bands, and this input vector used to derive a set of
similar samples.

Another application (used in the generative rhythm software)
would be to select an approximate spectral bandwidth, from which
the software can use Gaussian probabilities to generate a random
input vector (see Figure 3).

Figure 3. Defining a spectral band from which to choose a

sample.

4.3 Search Heuristics
Since the search space can contain several hundred items, even
when limited by using the pre-sorted bands_by_sample array, it
was found that evaluating it in its entirety (using a 16-nearest
neighbor implementation) took too long in performance, often
several seconds. Therefore, a heuristic algorithm was created to
find enough (16) acceptable solutions within an acceptable
amount of time (less than 1500 ms).

When the randomly incremented search first begins, only those
ratings above 0.66 are acceptable; after 250 ms, this is enlarged to
include samples above 0.65, and after 1000 ms, it is enlarged to
include 0.55 and above. During the search, results are added to the
samples list and loaded, immediately available for performance.

4.4 Dissimilarity
Choosing dissimilar timbres to a given Bark set is simply a matter
of creating an inverse probability vector around the three bands,
then choosing three new bands using quantile probabilities from
this vector, and finally searching for timbres with the new bands.
 If the inverse selected bands are derived only once prior to
selection, the resulting timbres will all be similar (since they share
the same bands); however, the same inverse probability vector can
generate a different set after each sample selection. This would
result in each sample being dissimilar to the original, yet with a
likelihood of dissimilarity within the new sample groups.

5. METHOD 2 DESCRIPTION
5.1 Self-Organizing Map
The second method for timbral selection uses a self-organizing
map, or SOM [18]. Analysis data is clustered automatically by the
SOM, according to similarities. Although any group of features
can be used to compute similarities, the strength of this method
relies upon the 2D visualisation of the resulting organisation (see
Section 5.4).

5.2 Generation of the Self-Organizing Maps
A self-organizing map was implemented in MaxMSP to create a
two dimensional representation of the sample database. SOMs are
a type of artificial neural network using a neighborhood function
so as to reflect feature proximity in a topologic manner.

For purposes of comparison to method 1, the input vector
consisted of a sample’s 3 highest Bark bands’ numbers, between 0
and 23; however, the input vector can easily be changed to use
any feature data, and be of any size (see Section 5.4). The
visualization map was a 25 by 25 Jitter matrix, representing the
625 individual nodes (neurons), with the 3 weights of each node
(one per band) being mapped to RBG values. The grid itself is
toroidal, in that opposite edges are connected.

5.2.1 Training
Each node’s weights are initialized to random values between 0
and 1. The number of training iterations (ti) was defined as 10,000
for the sample database of 1,551 items; the initial neighborhood
size (ins) was half the size of the map: 12 nodes, in every
direction. The initial learning rate was set to 1., and decreased at a
logarithmic rate at each training iteration (t) to produce the
learning rate (lr) using the following function:

lr (t) = log 10 (t / ti) (1)

Similarly, the neighborhood size (ns) decreased at a logarithmic
rate:

ns (t) = log100 (t / ins) (2)

At each iteration, a training example, chosen randomly from the
database, is fed to the network, and the Euclidean distance to all
weight vectors computed. The winning vector, (the best matching
unit, or BMU) is the node with the weight vector most similar to
the vector of the input instance.

The weights of the BMU and those nodes in the neighborhood are
then adjusted towards the input vector. The differences between
their current weight and the input vector are multiplied by the
weight scaling function (ws), and then added to the original
weights:

ws = lr / (ns2 + 1) (3)

Self-organisation initially takes place on the global scale (since
the initial neighborhood is the entire map), whereas over time, the
neighborhood shrinks to what is eventually a single node, and the
weights converge to local estimates.

Figure 1. An example visualization of the SOM of the
percussion sample library.

Once training is complete, the SOM will display those samples
that are similar to one another in close proximity (see Figure 1).
The actual colours displayed relate to the input vector (the 3 most
intense Bark bands): in this case, the dark colours represent those
samples in which all three Bark bands are low; the light colours
represent those samples in which all three Bark bands are high;
those that are closer to one primary colour represent samples
whose Bark bands are spread out - i.e. a given Bark band vector of
(17 3 5) will be bright red.

5.2.2 Mapping
Once training is complete, it is possible to directly associate
individual nodes and input vectors. The database was incremented
through in its entirety (one additional epoch), and fed to the SOM,
with each BMU’s sample number being stored in a separate array.

For the SOM shown in Figure 1, only 52% of the nodes had direct
associations; however, of those with associations, the mean
number of associations was 4.85, with a maximum of 139 sample
files per node. This duplication of associations resulted from
samples within the database having essentially identical data (i.e.
the 3 most intense Bark bands). See Section 5.4 for a more
productive use of the SOM.

Figure 2. The associated SOM from figure 1, displaying the

unassociated neurons as black.
The SOM can also be visualized to only show the direct
associations, with non-associated nodes remaining black; thus,
this visualization shows potential clustering of data (see Figure 2).
Note, for example, the relative isolation of the two bright red
squares in the bottom right, which signifies few similarities within
the database to those samples. Compare this to the clusters of
white squares at the extreme bottom right (which also wrap
around to the top of the map): this signifies a clustering of similar
samples within the database.

5.3 Realtime Implementation
An obvious benefit of using a SOM is its ability to visualize
similarities within a database. The most practical realtime
implementation for a SOM is to allow the user to click on the
visual map, and derive the appropriate association(s) from the
database. This is a simple matter of converting the <x,y> mouse
selection coordinates into an index into the association array.
Using the post-learning associative matrix (Figure 2), which
clearly displays learnt associations, only those items in the
database that directly correlate to the visual display will be
returned.

5.4 Choice of features to display
As with any SOM, the effectiveness of the visualization is in the
choice of features to display. It was found that the best features to
choose were those that had significant differences within the
database.

For example, Figure 4 displays the soundscape database, using the
standard deviation over the sample’s duration, of brightness,
loudness, and noise. Thus, those squares that display more red are
associated with samples that have more dynamic frequency
(spectral centroid) change; those squares that display more green
have more variation in their spectral energy; those squares that
display more blue have more dynamic change in their spectral
flatness.

Figure 4. SOM visualizing the soundscape database, using
standard deviation of brightness, loudness, and noise, after

three epochs. Since the database has fewer items, the matrix
was reduced to 10 x 10.

Figure 5 displays the selected GarageBand loop database, using
mean brightness, standard deviation of brightness, and mean
frequency. In this case, those squares that are dark contain low
frequencies, and have little change in their spectral centroid (i.e.
the bass samples); those squares that are yellow have higher
spectral energy, with dynamic spectral change (i.e. the percussion
samples).

Figure 5. SOM visualizing the GarageBand loop database,

using mean and standard deviation for brightness, and mean
frequency.

5.5 Larger feature sets
Since the Bark analysis produces 24 discrete intensity values, it
was possible to train the SOM using all 24 values as an input
vector. Using the GarageBand loops, after 64 epochs (100,000
training iterations), the finer delineations between datum allowed
more associations to be made. In the case of Figure 6, while only
46% of the squares had direct sample associations after 1 epoch,
over 82% had associations after 64 epochs (see Fig. 6).

Visualizing 24 inputs in 2 dimensions required mapping the 24
weights of each node to the three RGB values. The averages over
8 bands’ intervals were used. As a result, red squares indicate
energy primarily in low bands; greens indicate energy in the
midrange bands, and blues indicate energy in the high bands.

Figure 6. SOM visualizing 24 Bark bands of GarageBand

loops, using mean amplitude (left) and the associative SOM,
displaying black for non-associated nodes (right)

5.6 Realtime applications
If was found that the most effective use of SOMs in performance
was to display several visualizations at once, allowing the user to
make selections in one or more of the maps, then correlating the
resulting selections. For example, using one SOM to display
temporal information (such as Figure 4), and one to display
frequency content, it is possible to select those items from the
database that are associated with both selections.

Another useful application was to draw paths through the
visualized data, which could be interpreted over time. For
example, using the visualization presented in Figure 4, a path was
drawn from the top left through the bottom middle, which was
interpreted over a ten minute performance. During this time,
samples could be automatically selected, beginning with dynamic
frequency change, and ending with those with dynamic noisiness.

6. COMPARISON
It was found that both methods were useful, each offering
benefits, and detriments, that need to be considered for the
specific performance requirements.

6.1 Benefits to Method 1
Because the fuzzy logic system uses heuristics, enough acceptable
solutions will always be found. In cases where a specific number
of solutions is required (i.e. agent-based performers), this is of
great benefit.

6.2 Detriments to Method 1
Although acceptable solutions will always be found, depending
upon the input criteria, the level of acceptability can vary greatly.
Since this method does not visualize the database, it is possible to
define criteria which does not exist within the database. This is
especially true if the database is relatively small.

6.3 Benefits to Method 2
SOMs visualize the actual database, which can influence the
design of the database itself; for example, if not enough high
frequency samples are present, the SOM can display this, and
adjustments can be made.

Multiple SOMs can be used to display different features, and
different features can even be visualized within a single SOM. In
fact, SOMs are extremely flexible in their ability to display
similarities over any kind of data.

Perhaps the greatest benefit of SOMs to realtime performers is the
fact that no actual calculations - other than conversion of mouse
location to database indices - is necessary: all the “heavy-lifting”
is “front-loaded”.

6.4 Detriments to Method 2
Although SOMs allow easy visualization, it is not immediately
clear what is being visualized; for example, knowing what a red
pixel represents, as opposed to a blue, requires an understanding
of the analysis itself.

Since SOMs involve time-consuming training, they are not
realtime, and so cannot display any new data.

Lastly, there is no easy way (at least compared to point and click)
of selecting a range of selections or associations. In other words,
the SOM (as discussed here) does not display the number of
associations behind any square, and thus guaranteeing a certain
number of selections (see Section 6.1) is more difficult.

7. CONCLUSIONS
We have described two different methods for realtime sample
selection based upon timbral properties and similarity within large
databases of samples. Both methods offer different benefits to the
laptop performer, and both methods can be implemented within
MaxMSP.

Two future directions are being currently investigated. In the first
case, adding new samples to the database requires their analysis,
and, in the case of method 2, retraining the SOM. This retraining
could be overcome by borrowing node locations from similarly
rated samples. In the second case, clustering algorithms could be
incorporated within the SOM so as to position the associated
nodes closer together and thus generate Islands of similarity [9].

This software, along with the mentioned generative rhythm
software, was created in Max/MSP, and is available at the first
author’s website: [www.sfu.ca/~eigenfeldt/research.html].

8. REFERENCES
[1] Lippe, C. 1993. “A Composition for Clarinet and Realtime

Signal Processing: Using Max on the IRCAM Signal
Processing Workstation”, in Proceedings of the 10th Italian
Colloquium on Computer Music, Milan, Italy.

[2] Hsu, W. 2006. “Managing Gesture and Timbre for Analysis
and Instrument Control in an Interactive Environment”, in
Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME), Paris.

[3] Ciufo, T. 2005. “Beginner’s mind: an environment for sonic
improvisation”, in Proceedings of the International
Computer Music Conference (ICMC), Barcelona.

[4] Jehan, T., Schoner, B. 2001. “An Audio-Driven Perceptually
Meaningful Timbre Synthesizer”, in Proceedings of ICMC.

[5] Rebelo, P., Renaud, A. 2006. “The Frequencyliator –
Distributing Structures for Networked Laptop
Improvisation”, in Proceedings of NIME.

[6] Fiebrink, R. et. al 2008. “Support for MIR Prototyping and
Realtime applications in the ChucK Programming
Language”, in Proceedings of the International Conference
on Music Information Retrieval (ISMIR).

[7] Tzanetakis, G., Cook, P. “MARSYAS: A Framework for
Audio Analysis” in Organized Sound, Cambridge University
Press 4(3), 2000.

[8] Cano, P., Koppenberger, M. 2004. “Automatic sound
annotation”, in IEEE Workshop on Machine Learning for
Signal Processing, pages 391–400.

[9] Pampalk, E., Dixon, S., Widmer, G. 2004. “Exploring Music
Collections by Browsing Different Views”, in Proceedings
of ISMIR.

[10] Logan, B. 2002. “Content-based playlist generation:
Exploratory experiments”, in Proceedings of ISMIR.

[11] Aucouturier, J.-J., Pachet, F. 2002. “Music Similarity
Measures: What’s the Use?”, in Proceedings of ISMIR.

[12] Lübbers, D. 2005. “Sonixplorer: Combining Visualization
and Auralization for Content-based Exploration of Music
Collections”, in Proceedings of ISMIR.

[13] Knees, P., Pohle, T., Schedl, M., Widmer, G. 2002.
“Automatically describing music on a map”, in Workshop on
Learning the Semantics of Audio Signals.

[14] Jehan, T. 2005. Creating Music by Listening. PhD thesis,
MIT Media Lab, Cambridge, MA.

[15] Klir, G. J., Yuan, B. 1995. Fuzzy Sets and Fuzzy Logic:
Theory and Applications, Prentice Hall, Upper Saddle River,
NJ.

[16] Eigenfeldt, A., Kapur, A. 2008. “An Agent-based System
for Robotic Musical Performance”, in Proceedings of NIME.

[17] Eigenfeldt, A., Pasquier, P. 2009. “Realtime Selectin of
Percussion Samples Through Timbral Similarity in
Max/MSP”, in Proceedings of ICMC.

[18] Kohonen, T. 1984. Self-organization and Associative
Memory, 3rd ed., Springer, New York.

