
The Closure-based Cueing Model: Cognitively-Inspired Learning and
Generation of Musical Sequences

James Maxwell
Simon Fraser University SCA/SIAT

jbmaxwel@sfu.ca

Philippe Pasquier
Simon Fraser University SIAT

pasquier@sfu.ca

Arne Eigenfeldt
Simon Fraser University SCA

arne e@sfu.ca

ABSTRACT

In this paper we outline the Closure-based Cueing Model
(CbCM), an algorithm for learning hierarchical musical
structure from symbolic inputs. Inspired by perceptual and
cognitive notions of grouping, cueing, and chunking, the
model represents the schematic and invariant properties of
musical patterns, in addition to learning explicit musical
representations. Because the learned structure encodes the
formal relationships between hierarchically related musi-
cal segments, as well as the within-segment transitions, it
can be used for the generation of new musical material fol-
lowing principles of recombinance. The model is applied
to learning melodic sequences, and is shown to general-
ize perceptual contour and invariance. We outline a few
methods for generation from the CbCM, and demonstrate
a particular method for generating ranked lists of plausible
continuations from a given musical context.

1. INTRODUCTION

1.1 Music Perception: Specificity and Invariance

The music perception and cognition literature has long
acknowledged the existence of categories of perceptual
change used by listeners to build mental representations
of musical forms. The term “contour” has been used to
describe directionality in perceptual change [1, 2, 3] and
studies have shown contour to be a primary attribute used
in the short-term recognition of basic musical patterns,
and the comprehension of musical structure [4, 5, 6]. At a
more detailed level of description, there are also categories
of invariance, which express the perceptual similarity of
patterns which are quantitatively dissimilar. For example,
the music descriptor “pitch interval” is invariant across
changes of absolute pitch level, just as the category of
“rhythm” is invariant across changes in tempo. Finally, at
the most detailed level of description, there are quantita-
tively “identical” percepts—specific pitches, for example.
These three levels of perception share a complex interac-
tion during music listening, which appears to develop with
age and musical experience (for an overview, see Dowling
[7]).

Copyright: c©2011 James Maxwell et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

1.2 Probability or Planning?

Ever since the publication of Shannon’s “Information
Theory”, musicians and researchers have focused on the
information-theoretic properties of musical structure (in
particular, the “Markov property” [8]) when consider-
ing the type of formal continuity demonstrated by a
given musical “style.” Although the importance of such
information-theoretic properties cannot be denied, we sug-
gest that they are effects of musical thinking, not necessar-
ily generative factors. For the CbCM, we propose an alter-
native approach founded on ideas from music perception,
cognition, and memory. Although the CbCM demonstrates
information-theoretic properties similar to other related
models, it will be seen that the learned structure allows for
an approach to generation unlike that applied in conven-
tional Markov models.

Like our earlier MusicDB [9], the CbCM was designed
as a ‘musical memory’, to be used in a larger interactive
composition system. Aspects of the CbCM can be com-
pared to Lartillot’s models for motivic extraction [10, 11],
but whereas those models focus on pattern detection, the
CbCM emphasizes hierarchical structure and sequence
generation. The CbCM also shares some similarity with
Deutsch & Feroe’s hierarchical pitch representation [12],
though the formalism differs considerably. Following a
detailed discussion of the model, we will give examples
of its implementation in a composition environment called
ManuScore, where it is used to generate sorted lists of
phrase continuations from a given musical context.

The CbCM makes no claims of biological plausibility.
Rather, it takes theoretical ideas from the cognitive science
of music as jumping-off points in the formulation of a
model for hierarchical sequence learning and generation.

1.3 Ideas and Terminology

The CbCM has been designed with reference to a number
of principles of musical memory:

1. Association: The process by which events that oc-
cur in close temporal succession form connections
in memory.

2. Cueing: The process through which “one memory
cues another memory with which it has formed an
association” [13].

3. Closure: “When some aspect of the acoustical envi-
ronment changes sufficiently, a boundary is created”

mailto:jbmaxwel@sfu.ca
mailto:pasquier@sfu.ca
mailto:arne_e@sfu.ca
http://creativecommons.org/licenses/by/3.0/

[13]. The perception of this boundary is referred to
as closure.

4. Grouping: “The tendency for individual items in per-
ception to seem related and to bond together into
units” [13]. In the context of music, events tend to
be grouped around points of perceptual closure.

5. Chunk: “Chunks are small groups of elements (5-
9) that, by being frequently associated with one an-
other, form higher-level units, which themselves be-
come elements in memory” [13].

1.4 Two Dimensions of Hierarchy

Hierarchical models of musical form, like Lerdahl & Jack-
endoff’s “Generative Theory of Tonal Music” (GTTM)
[14] organize musical materials into segments of in-
creasing duration, building “motifs” at the lowest levels,
“phrases” and “sections” at higher levels, and finally com-
plete compositions at the highest levels.

However, there is another type of hierarchy in music
which is perhaps not immediately apparent, and which
has not generally been applied in computational models
of music learning and generation; a dimension relating to
the specificity of perceptions. When describing the pitch
sequence {C4 G4}, many computational models will rep-
resent this sequence by enumerating its various attributes;
the pitches C4 and G4, the melodic interval of 7 semi-
tones, and perhaps the contour (“+”). This conception
tends to give equal weight to each attribute in the music
representation. We propose that the invariant categories of
interval and contour are not merely attributes of an event,
but rather represent hierarchically prerequisite states, such
that each pitch in a sequential context requires an interval,
and each interval requires a contour. Such a conception of
hierarchy is similar to Conklin’s notion of “subsumption”
[15], though our implementation expresses this idea explic-
itly in the CbCM topology (see Figure 1). The primacy of
contour in short-term melodic recognition and the adapt-
ability of melodic recognition to changes in absolute pitch
level [1, 6] support this general conception of hierarchy.

With this in mind, the CbCM employs a music repre-
sentation with three hierarchical levels of specificity: 1)
Schema, the fundamental level pertaining to the detection
of perceptual change (i.e., pitch contour), 2) Invariance,
which captures relative quantities like those described by
pitch intervals, and 3) Identity, which deals with the
absolute quantitative values of the percepts themselves.
Note that the application of such concepts need not be
limited to pitch material; “contour”, for example, could
be applied to rhythmic augmentation and diminution, or
to changes in harmonic tension or density.

2. OVERVIEW OF THE MODEL

2.1 General Design

The CbCM can be conceptualized as a graph, the structure
of which is learned from a time series of symbolic musical
inputs. The graph is hierarchical and concurrent, so that
states of the graph are represented by one or more active

Figure 1. “Nesting” nodes of increasing specifity.

nodes. Concurrency in the CbCM reflects the manner
in which musical structure unfolds simultaneously along
multiple hierarchical dimensions. For example, a common
statement like “at the end of the third verse” implies a
location along three concurrent temporal dimensions: “at
the end”—a position at the level of a musical phrase, “of
the third”—a location in the complete form of the song,
and “verse”—a position at the level of a musical section.

The states of the CbCM are ordered along two hier-
archical dimensions; a vertical dimension, and a nesting
dimension. The vertical dimension is explicitly sequential,
and is arranged into one or more levels, each of which
corresponds to a level of formal organization similar to
those proposed by models like the GTTM. The nesting
dimension organizes states and their substates according
to the three levels of hierarchical specificity mentioned
above: Schema , Invariance, and Identity. Considering
these relationships under the formalism of Hierarchical
State-Machines, we can say that Identity states are implic-
itly Invariance states, which are implicitly Schema states,
as suggested by Figure 1.

For the sake of simplicity, we will use the term “levels”
to refer to locations along the vertical dimension, and the
term “states” (substates/superstates) to refer to locations
along the nesting dimension.

2.2 Preprocessing and “Closure”

The CbCM builds its specific structure based on the notion
of closure; i.e., the delineation of formal boundaries by the
perception of musical change. However, it does not define
or calculate the parameter over which change is detected.
Rather, this value—referred to as the closureSignal—must
be provided with the stream of input events. The CbCM
detects significant changes in the closureSignal, and uses
these changes to define segments in the learned model.
This design is convenient, as it decouples the segmentation
criteria from the hierarchical learning process; i.e., the
specification of the closureSignal can be tailored to the
type of input (melodic, rhythmic, harmonic, etc.).

A preprocessing step must be used to calculate the clo-
sureSignal for each input, in consideration of the type
of input and the specification of an appropriate closure
measure for that type. By isolating different input types
in this manner, we acknowledge Snyder’s notion of “soft
closure” (though we will refer to this generally as closure).
In our implementation, we are learning/generating melodic
pitch sequences, and use calculations for melodic pitch ex-
pectancy based on Margulis [16], and rhythmic expectancy
based, in part, on Desain [17]. Details of the preprocessing
used in the current study are given in Section 4.2.

Computationally, the CbCM is realized as a network, the
nodes of which are arranged into one or more levels, each
of which contains a sequence of states (and their substates).
Each node on a level has a single parent, and each substate
has a single superstate, so that the sequential structure
within a given level forms a tree, as does the state structure.

2.3 Learning and Inference in the CbCM

The CbCM is an online learner, and thus always runs its
inference step before proceeding with learning. Each level
of the CbCM has a single rootNode and a single contextN-
ode. The rootNode does not store any information, but
rather serves as an initial state from which edges to other
nodes can be searched and/or created. The contextNode
acts as a pointer to the current state on a given level. It
is updated with each input, and thus progresses through
its level as musical transitions are perceived. Each time
a given node becomes the contextNode, a counts variable
is updated, for use during generation. Because each level
has its own contextNode, the model progresses through all
levels simultaneously, reflecting the notion of concurrency
described in Section 2.1.

Since the contextNode acts as a pointer to the current
state of the CbCM, inference involves a search through the
contextNode’s attached edges for a transition matching the
input. Failure to find a matching transition at the current
state forces the search to be repeated at the superstate.
Thus, failure to match the Identity state (pitch) forces a
search of the Invariance state (interval), and failure to
match the Invariance state forces a search of the Schema
state (contour), as shown in Figure 2 (in the diagram,
contextNodes are represented in white, light grey nodes
represent superstates, and dark grey nodes represent hypo-
thetical learned states). This pattern of defaulting toward
the superstate when a transition cannot be found character-
izes the generalization process used by the CbCM.

Figure 2. Generalizing to the deepest applicable state.

Learning in the CbCM involves the construction of a
hierarchical network representing the states and transitions

embodied by a set of source works. At initialization, the
CbCM has a single level with its contextNode set to the
rootNode. Since only the rootNode node exists, the current
state is assumed to be Schema. Learning cannot proceed
without an initial context, so the first input is ignored.
When processing subsequent inputs, the CbCM first per-
forms inference, as described above. Since no transitions
can be found, the model proceeds with learning. Learning
a new transition involves adding a new node, expressing
the greatest specificity possible, to the network. With only
the rootNode in place, the CbCM extracts the Schema
information from the input, creates a new Schema state
node, and connects its edge to the rootNode.

The pattern for learning new nodes/states is shown in
Figure 3. If the current state has no transitions to the input,
only the Schema state can be learned, as shown in the 1st
iteration. If an appropriate learned state can be reached via
the current state’s superstate, then the input can be added
as a substate of the reached state, as in the 2nd iteration
of Figure 3. This process continues until the Identity state
representation has been learned (3rd iteration). In a trained
CbCM, the edges connecting nodes represent associa-
tions, with the strongest associations being made between
Identity states (since Identity states can only be formed
through repeated exposure to a particular transition).

Figure 3. Learning states in order of reachability.

2.3.1 Closure and CbCM Structure

As mentioned in Section 2.2, the specific structure of the
CbCM is determined through changes in closure, the value
of which is calculated during preprocessing. The node
itself stores the closureSignal value, which is updated each
time the node becomes the level’s contextNode. The input
closureSignal is monitored at each time step, and moments
of decreasing closure are used as indicators of formal
change; i.e., when the closureSignal of the current input
falls below that of the contextNode, a boundary is formed.
During inference, this boundary forces the CbCM to limit
its search for transitions to those edges with connections

into higher level nodes. During learning, the boundary
marks the end of the current segment, forcing the learned
node to be added to a higher level in the model, as shown
in Figure 4.

Figure 4. A decrease in closureSignal forces learning to a
higher level.

Nodes created at higher levels thus represent chunk
boundaries [13], marking the beginnings of perceptual
segments. Each higher level node cues an L1 node, so
that the continuation of a higher-level node is always a
sequence of L1 nodes. This can be seen in Figure 5, which
shows the cueing connection (edge 6) made between the
L2 contextNode (-) and the new L1 node (-). In the learning
algorithm, this pattern is achieved by setting the level’s
contextNode back to the rootNode every time a segment
boundary is detected. When the following E4 is received
(Figure 5), the search at L1 is carried out on the rootNode
(which is now the contextNode). Since no descending
Schema transition has been learned, a new node is added to
the rootNode. At the end of a single pass through the input
sequence in Figure 5, the model has learned two contour
segments: {+ + + +} and {- -}.

Figure 5. Learning reverts to L1 after a higher-level tran-
sition.

When learning creates nodes at higher levels (i.e., beyond
L2) the process follows the same general pattern. If L1
detects a segment boundary, the CbCM attempts to learn
the input at L2, but if L2 also detects a segment boundary,
learning is passed to L3, and so on.

In order to clarify the formal relationship between higher-
level nodes, we make an additional across-level connection
when adding nodes above L2. This connection passes from
the contextNode of the current segment’s level to the newly
learned higher-level node. We refer to this connection as

a “formal cue”, since the transition it describes is never
directly output during generation; it serves only to form a
cueing relationship between chunk boundaries, thus estab-
lishing hierarchical structure.

A diagram of a pitch CbCM trained on a single pass
of the opening theme from Bach’s BWV 846 (Fugue) is
given in Figure 6. In the diagram, the contour symbols (+,
-) indicate Schema states, the round-bracketed numbers
indicate Invariance substates, and the square-bracketed
numbers indicate Identity substates. The curved arrows
from L1 indicate across-level cues, and the curved arrows
connecting higher levels back into L1 show the cueing
function of chunk boundaries. The formal cues in the
model are labelled with italics (F1, F2, and F3).

Figure 6. A CbCM for pitch, trained on a single pass of
the theme from Bach’s BWV 846 (Fugue).

2.3.2 A Note About Trained CbCM Structure

A few observations can be made about the CbCM,
considering it as a graph—or rather, a composite of
hierarchically-related graphs—in which the nodes at
each state (Schema, Invariance, Identity) form directed
graphs with the following properties:

1. For each level in the model a tree subgraph exists,
describing the work/corpus at a particular level of
temporal/formal organization.

2. The L1 tree represents the set of all perceptually
grounded segments in the corpus.

3. Each level above L1 also represents a set percep-
tually grounded segments, but at higher level of
formal structure (the segments contained by higher
levels are analogous to “time span reductions” in
the GTTM).

4. The L1 tree is the intersection of all higher-level
subgraphs in the model (i.e., all higher levels have
paths through L1).

5. Formal cues ensure that all higher-level nodes also
form a separate subgraph describing the relationship
between all perceptual (L1) segments in the corpus.

6. For every higher-level node Lnx there exists at least
one path through L1, of length > 1, which termi-
nates in an adjacent higher-level node Lny.

7. In a trained CbCM there exists at least one path xPy,
in each state graph (Schema, Invariance, Identity),
describing the complete sequence of transitions in a
particular source work.

3. GENERATION FROM THE CBCM

The CbCM is a hierarchical encoding of musical informa-
tion designed with an emphasis on sequence generation.
One of our design priorities was to link the learning and
generation processes in a cognitively grounded manner. To
do this, we modelled the algorithms on ideas from Logan’s
“Instance Theory” of learning. Logan’s theory proposes
that novices initially approach a problem with a “general
algorithm that is sufficient to perform the task”, but that
with repeated exposure they eventually learn to “respond
with a solution from memory” [18]. The theory explains
the iterative nature of learning and the rapid increases in
efficiency observed with repeated exposure to the condi-
tions of (and solutions to) a given problem.

Given the learning algorithm described in Section 2.3,
we can see how the CbCM might demonstrate instance-
based learning in the context of generation. Consider the
problem of trying to repeat the example transition {C4
G4}. After a single exposure, the CbCM would extract
only contour information: “Schema = +”. When trying
to repeat the transition, a “general algorithm” could thus
proceed via heuristic search; i.e., using the Schema infor-
mation to build a search space of pitches above C4. After
a second exposure to the transition, the interval substate
“Invariance = 7” would be learned, and generation could
proceed according to a “rule”—i.e., ‘add 7 to the previous
note.’ Finally, after a third exposure to the sequence, the
CbCM would learn the substate “Identity = G4”, and
could recall the transition directly from memory.

Of course, when executing the “general algorithm”, we
must have some criteria for evaluating potential solutions
in the search space. Here we turn to Ritchie’s notion of
“quality.” Ritchie defines quality as a degree of member-
ship in the set of objects that define a given “class”—a
genre, for example [19]. Since the CbCM uses the clo-
sureSignal as a constraint on well-formedness, it follows
that the calculated closureSignal of a given production will
reflect the quality of that production. Our basic quality
calculation is:

Qs = f (contextNode,s)
s ∈ S (1)

where Qs is the quality rating of production s, f () is a
function used to calculate the closureSignal of a given
transition (used during preprocessing), and S is the set of
possible productions. The sequence (contextNode,s) rep-
resents the transition from the contextNode’s value (e.g., a

MIDI note) to the value of a possible production (output)
which, in this case, would also be a MIDI note.

In a trained CbCM, the previously learned transitions
should provide ‘exemplars’ for good productions, so that
the highest quality novel productions should result in clo-
sureSignals proximal to those produced by the learned
transitions:

Qn = 1− min
{τ∈T}(|Qn−Qτ |)
n ∈ N

(2)

N = S\T (3)

where Qn is the quality rating of production n, N is the set
of novel productions at the contextNode, and T is the set
of productions made possible by the learned transitions at
the contextNode. Depending on the input type, S may be
infinitely large, as is the case with ‘unquantized’ rhythmic
values. Thus, for practical purposes, we limit S to some
finite set of discrete symbols—i.e., quantized rhythmic
values or MIDI note numbers.

3.1 Generation by Planning

From the preceding discussion, it is clear that two ba-
sic approaches to generation are possible: 1) selecting
transitions based on quality, and 2) selecting transitions
probabilistically using the counts values of all reachable
nodes. The first approach will be strongly influenced by
the closureSignal calculation function, while the second
approach will result in behaviour analogous to a variable-
order Markov model. Of course, a combination of quality
and probability could also be used.

However, the CbCM also provides a mechanism for
generating segments through a process of planning. This
is the approach used for generating continuations in our
ManuScore composition environment, discussed in Sec-
tion 4. In this approach, we consider transitions not at
the note-to-note level, but rather at the phrase level. If
we look at Figure 6 from the perspective of L2, we can
think of L2-Node1(-2) as a goal, which can be successfully
achieved by a specific plan—in this case, the L1 sequence
{+ + + +}. This segment can be generated by backtracking
through edge 5 to L1-Node4, and along the chain of parent
nodes, until we reach the rootNode, as shown in Figure 7.

Figure 7. Building a plan through backtracking.

Generating plans from levels above L2 follows an “un-
winding” pattern, in which plans alternate between output
plans (sequences of L1 nodes) and formal plans (se-
quences of higher-level nodes). The formal plans are de-
termined by backtracking along the formal cues discussed

in section 2.3.1. Since formal plans are sequences of
higher-level nodes, they do not result in output, but rather
provide chunk boundaries from which we can generate
output plans (which can be directly output). As plans are
unwound from the top, each generated output plan can be
placed on a stack for subsequent evaluation.

3.2 Novelty and Quality in the CbCM

Ritchie defines novelty as the degree of dissimilarity of
a production to existing examples of that genre [19]. As-
suming that the CbCM has been sufficiently trained on
appropriate examples (that is, its structure represents a
“genre”), we can evaluate novelty in terms of the inter-
section between a given subgraph in the CbCM and the
inferred subgraph of the production. For a given state/node,
Equation 3 defines a local set of novel productions (transi-
tions not yet learned in the current context) with which a
more general measure of novelty can be calculated.

Of course, producing a single novel transition doesn’t
guarantee “novelty” any more than exploiting a known
transition prohibits it. Novelty is dynamic and cumulative.
For this reason, it is useful to calculate the potential for
novel generation at the current time step (NLimt) cumula-
tively through time:

NLimt =
∑

n
t=0

(
|N|
|S|

)t−n

n+1
(4)

Equation 4 can be used to determine NLimt over the
entire CbCM, by continually incrementing n from the
beginning of training/inference, or it can be used locally,
by setting n to the sequential position of the contextNode
on its branch. The novelty rating Λt

p of a given production
p will thus be:

Λ
t
p =

{
NLimt if p ∈ N
0 otherwise (5)

The use of NLimt can allow the model to determine the
probability of generating a novel production in the current
context, while Λt

p helps estimate the novelty of a given
production from a trained CbCM.

4. IMPLEMENTATION

As mentioned above, we designed the CbCM to serve as
a musical memory for a larger music composition system.
In our ManuScore software, the user can request continu-
ations of a given context, for which the CbCM provides a
sorted list of possible options. The user can toggle through
the ranked pitch and rhythm segments independently, au-
ditioning each pitch/rhythm combination via MIDI.

4.1 Pitch and Rhythm Models

In order to model the phenomenon of primitive group-
ing—the independent grouping of pitch and rhythm infor-
mation at low levels of auditory processing [13]—while
at the same time modelling the interaction of pitch and
rhythm in music cognition, we designed our melodic learn-
ing/generation system to utilize two CbCMs; one for pitch

and another for rhythm. Each model performs “primitive”
segmentation at L1, by monitoring changes of closure
in a single domain, but both models combine pitch and
rhythmic closure information when segmenting at higher
levels. In this way, the trained system retains a vocabulary
of independent pitch and rhythm ‘motives’ at L1 (which
can be combined in novel ways during generation), but is
also able to represent high-level musical form. During gen-
eration, we construct plans for each model independently,
then pair up the pitch and rhythm plans for rendering to the
score.

4.2 Preprocessing of the closureSignal

In our implementation, a preprocessing step determines
the closureSignal for pitch using Margulis’ “Melodic Ex-
pectancy Model” [16]. We do not apply the model in
its complete form, but use only the “basic expectancy”
calculation, treating points of decreasing expectancy as
instances of “soft closure” [13]. Because we are not mod-
elling harmonic context in the current study, we omit the
“stability” coefficient from Margulis’ formula (as recom-
mended in [16]):

z = (p×m)+d (6)

where z is the expectancy, p is the “proximity rating”, m
is the “mobility” (as in Margulis’, 2/3 for repetitions, 1
otherwise), and d is the “direction rating.” For details see
Margulis [16]. We scale z to real a number in the range
[0,1] and use it as our closureSignal for pitch.

To calculate rhythmic closure, we use a combination of
rhythmic proximity and rhythmic expectancy. For the ex-
pectancy calculation we use Desain’s “basic expectancy”
from his “(De)composable Theory of Rhythm” [17]. For
the proximity calculation we use a simple exponential
function:

p = 1.0− x2

n2 (7)

where p is the calculated proximity, x is the IOI time,
and n determines the temporal window over which con-
nectivity will be maintained—we set this value to 6000
milliseconds to approximate the span of short-term mem-
ory [13]. Because any duration of silence separating events
decreases their perceptual connectivity [13], we apply a
further scaling for events separated by a silence greater
than 800 milliseconds.

p = µ− µ× (x−800)2

n2 (8)

where µ determines the initial scaling amount, x is the
separation time, and n determines the temporal window
over which the scaling will occur (5200 ms in our model).
We set µ to 0.7, so that any separation greater than 800
ms incurs an immediate 70% reduction in connectivity. If
p < 0 we set it to zero.
The final rhythmic closureSignal z is the product of the

proximity and expectancy:

z = p× s (9)

5. MODEL TRAINING AND TESTING

We trained ManuScore on a monophonic arrangement
of the Fugue from Bach’s BWV 846, from the Well-
Tempered Klavier. Our choice to limit the source material
to a single work allowed us to easily identify novel pro-
ductions. In making the arrangement we tried to maintain
as much of the work’s formal integrity as possible, while
reducing the four-part setting to a single monophonic
voice 1 .

To test both inference and generation, we generated
output phrases as continuations of a given context. A
melodic fragment was entered by hand, and the CbCM
performed inference on the fragment and updated its state
accordingly. Generation was then initiated from the L2
contextNode of both models, and segments were formed
via backtracking (Section 3.1). The backtracking process
halted when the inferred state was reached; i.e., we back-
tracked to the point where the input fragment ended. All
segments generated in this manner were sorted by sum-
ming the counts values of their constituent nodes. When
determining the count attributed to a given state/node, we
summed the counts values of all implicit superstates (i.e.,
for an Identity plan node, we included the counts of its
Invariance and Schema superstates).

6. RESULTS

As an initial test, we entered the first two pitches of the
training work, which produced the continuation in Figure
8-A. Here, the top staff represents the input context and
the bottom staff represents the CbCM’s continuation. The
greyed-out note (F4) in the continuation indicates that the
rhythmic value was not part of a generated plan, but rather
was determined probabilistically in order to provide IOI
values for all notes in the generated pitch sequence 2 . The
label on the generated segment “P 1/7 - R 1/2” indicates
that the CbCM is displaying the first of seven pitch options
combined with the first of 2 rhythm options. Although
the CbCM in ManuScore does infer/generate rhythmic IOI
values, it does not handle note durations, so we extended
the ‘sustain bars’ in the generated output by hand, for the
sake of clarity. Toggling to continuation “P 2/7 - R 2/2”
we get the pitch/rhythm combination shown in Figure 8-
B, which is a novel sequence not contained in the source
work.

In Figure 8-C, we transposed the context fragment up
a tritone to {F#4 G#4}, producing a context not found
in the source work. The output is essentially the same,
generating 7 pitch options and 2 rhythm options, but has
been transposed up a tritone. This spontaneous transposi-
tion indicates that the CbCM has ‘defaulted’ to the Invari-
ance state during inference and modified its continuations
accordingly. A similar test is shown in 8-D, except that in
this case we entered a 4-note fragment which followed the
contour of the original, but not the interval sequence. The

1 The arrangement can be viewed at: http://
rubato-music.com/home/Media/Bach_846_Fugue_
monophonic.pdf

2 It is worth note that this IOI is incorrect; in the source work, the F4
falls on the downbeat immediately following the G4.

Figure 8. Continuations generated by the CbCM in
ManuScore.

production correctly completes the contour by continuing
with a {+2 -2} pattern. Inspection of the pitch CbCM
during inference revealed that the transitions {C4 F#4} and
{F#4 B4} from the context were inferred at the Schema
state, as expected, while the transition {B4 C5} was in-
ferred at the Invariance state. Since the source work has a
“+1” transition {E4 F4} in the same context, this behaviour
was also expected, indicating that the CbCM was able to
transition to a more specific substate.

For our next test, we entered a longer context running
from the beginning of the source work to half-way through
measure 5. The first option produced from this longer con-

http://rubato-music.com/home/Media/Bach_846_Fugue_monophonic.pdf
http://rubato-music.com/home/Media/Bach_846_Fugue_monophonic.pdf
http://rubato-music.com/home/Media/Bach_846_Fugue_monophonic.pdf

text is shown in Figure 8-E. The sequence produced, {G4
F#4 G4 A4}, is once again a novel segment, which does not
appear in the original. It provides a valid continuation of
the context, and is of particular interest since it maintains
the modulation to the dominant (alteration of F4 to F#4)
introduced in the previous measure. Option “P 3/3 - R 3/8”,
produced from the same context, produces a quotation of
the original.

Finally, we entered a completely novel, but still idiomatic
context fragment, resulting in the production shown in
Figure 8-F. The continuation is stylistically appropriate
and is not a direct quotation from the source work.

7. CONCLUSION

The continuations generated by the CbCM in this prelimi-
nary test suggest that the model may be capable of gener-
ating context-sensitive “quotations” from the training set,
in addition to reasonably well-formed novel productions.

The training process showed the expected pattern of
learning, achieving complete training (i.e., learning all
Identity states, as discussed in Section 2.3) after 3 passes
over the source work. After training, both the pitch and
rhythm CbCMs created 4 hierarchical levels. The pitch
model created 181 Identity state nodes, 68 Invariance
nodes, and 35 Schema nodes, over 274 transitions. Be-
cause the pitches comprising the source work are rep-
resented only by the Identity nodes (Invariance and
Schema states are implicit), we use the count of Identity
nodes for the calculation of compression, resulting in a
66% compression ratio.

8. FUTURE WORK

Our next step with the CbCM will be to evaluate per-
formance with a larger body of source works. We are
also interested in examining more closely the segmentation
produced by our melodic expectancy-based approach. Al-
though melodic expectancy seems a reasonable candidate
for a closureSignal, the determination of an ideal closure
calculation remains an open question. There is also a great
deal of room for investigation into the various methods
for generation offered by the structure of the CbCM as
a memory model. We are currently developing a modular
cognitive architecture for music, using the CbCM as a form
of long-term memory.

Acknowledgments

This research was made possible, in part, by a grant from
the Social Sciences and Humanities Research Council of
Canada.

9. REFERENCES

[1] W. Dowling, “Context effects on melody recognition:
Scale-step versus interval representations,” Music Per-
ception, vol. 3, no. 3, pp. 281–296, 1986.

[2] D. Deutsch, The psychology of music. Academic Pr,
1999.

[3] D. Levitin, “Memory for musical attributes,” Founda-
tions of cognitive psychology: Core readings, pp. 295–
310, 2002.

[4] W. Dowling and J. Bartlett, “The importance of interval
information in longterm memory for melodies,” Psy-
chomusicology: Music, Mind and Brain, vol. 1, no. 1,
2008.

[5] A. Lamont and N. Dibben, “Motivic structure and the
perception of similarity,” Music Perception, vol. 18,
no. 3, pp. 245–274, 2001.

[6] J. Edworthy, “Interval and contour in melody process-
ing,” Music Perception, vol. 2, no. 3, pp. 375–388,
1985.

[7] W. Dowling, The development of music perception and
cognition. Foundations of Cognitive Psychology.
Cambridge: MIT Press, 1999.

[8] C. Ames, “The markov process as a compositional
model: a survey and tutorial,” Leonardo, vol. 22, no. 2,
pp. 175–187, 1989.

[9] J. Maxwell and A. Eigenfeldt, “The musicdb: A music
database query system for recombinance-based com-
position in max/msp,” in Proceedings of the 2008 In-
ternational Computer Music Conference, 2008.

[10] O. Lartillot, “A musical pattern discovery system
founded on a modeling of listening strategies,” Com-
puter Music Journal, vol. 28, no. 3, pp. 53–67, 2004.

[11] O. Lartillot and P. Toiviainen, “Motivic matching
strategies for automated pattern extraction,” Musicae
Scientiae, vol. 11, no. 1 suppl, p. 281, 2007.

[12] D. Deutsch and J. Feroe, “The internal representation
of pitch sequences in tonal music.” Psychological Re-
view, vol. 88, no. 6, p. 503, 1981.

[13] B. Snyder, Music and memory: an introduction. The
MIT Press, 2000.

[14] F. Lerdahl, R. Jackendoff, and R. Jackendoff, A gener-
ative theory of tonal music. The MIT Press, 1996.

[15] D. Conklin and M. Bergeron, “Feature set patterns in
music,” Computer Music Journal, vol. 32, no. 1, pp.
60–70, 2008.

[16] E. Margulis, “A model of melodic expectation,” Music
Perception, vol. 22, no. 4, pp. 663–713, 2005.

[17] P. Desain, “A (de) composable theory of rhythm per-
ception,” Music Perception, vol. 9, no. 4, pp. 439–454,
1992.

[18] G. Logan, “Toward an instance theory of automatiza-
tion,” Psychological review, vol. 95, no. 4, pp. 492–
527, 1988.

[19] G. Ritchie, “Assessing creativity,” Institute for Commu-
nicating and Collaborative Systems, 2001.

	 1. Introduction
	1.1 Music Perception: Specificity and Invariance
	1.2 Probability or Planning?
	1.3 Ideas and Terminology
	1.4 Two Dimensions of Hierarchy

	 2. Overview of the Model
	2.1 General Design
	2.2 Preprocessing and ``Closure''
	2.3 Learning and Inference in the CbCM
	2.3.1 Closure and CbCM Structure
	2.3.2 A Note About Trained CbCM Structure

	 3. Generation from the CbCM
	3.1 Generation by Planning
	3.2 Novelty and Quality in the CbCM

	 4. Implementation
	4.1 Pitch and Rhythm Models
	4.2 Preprocessing of the closureSignal

	 5. Model Training and Testing
	 6. Results
	 7. Conclusion
	 8. Future Work
	 9. References

