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ABSTRACT
The problem that we are addressing is that of affect classifi-
cation: analysing emotions given input data. There are two
parts to this study. In the first part, to achieve better recog-
nition and classification of human movement, we investigate
that the labels on existing Motion Capture (MoCap) data are
consistent with human perception within a reasonable extent.
Specifically, we examine movement in terms of valence and
arousal (emotion and energy). In part two, we present ma-
chine learning techniques for affect classification of human
motion capture sequences in both categorical and continu-
ous approaches. For the categorical approach, we evaluate
the performance of Hidden Markov Models (HMM). For the
continuous approach, we use stepwise linear regression mod-
els with the responses of participants from the first part as the
ground truth labels for each movement.
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INTRODUCTION
In the recent growing interest of developing technology to
recognize people’s affective states [11], more and more stud-
ies have shown that body expressions are effective in convey-
ing emotion [4, 27]. As such, there is an increasing demand
for development of affect recognition systems which in turn
has potential impacts in clinical and entertainment contexts.
Thus in this paper, we developed an affect classification sys-
tem using the valence-arousal (VA) model of human emotion,
and is using full body motion capture data as input, which
does not contain any information regarding facial expressions
or voice. When considering the three aspects of movement,
functional (the task of the movement, such as picking up a
cup), executional (the pattern of movement, such as using the
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left or right hand to pick up the cup), and expressive dimen-
sions (the emotions behind the movement) [2], we are essen-
tially measuring the expressive dimension of full body move-
ments.

There are two parts to this study. This first part was con-
ducted to determine whether human participants would clas-
sify movement to the same labels given the same model of
affect and to establish the ground truths to be used in the con-
tinuous affect classification. In the second part of this study,
we create categorical models using HMM, as well as a con-
tinuous model using stepwise linear regression for affect clas-
sification.

This system has both off-line and on-line applications.
The main off-line applications involve database labelling,
which is especially useful for development of movement
databases [22]. A valid and reliable classifier for movement
expressivity would allow us to automatically label existing
motion capture data according to the valence-arousal model.
In on-line scenarios, such a classifier could be used in inter-
active arts or therapy contexts. Such a system can also be
used in generating movement with user-specified valence and
arousal [2].

Our goal is therefore to estimate affect expressed by move-
ment using the VA model. The system output is 1 of 9 classes
of VA combinations as shown in Figure 1, with each of va-
lence and arousal taking a label of low, neutral, or high for
the categorical approach, and a number between -1 and 1 for
each of valence and arousal for the continuous approach.

For the rest of the paper, we start by outlines of the related
work in affect classification. After that, we describes the data
and the processing used in our study. Next is experimental
methods, materials, and participants. Then, we present the
experiment results in the categorical and continuous models.
Lastly, we end with concluding remarks and future work.

BACKGROUND WORK
In affect classification, considerations that come into play in-
clude the mood the mover is expressing, the intended mood
of the mover, and the perceived mood of the mover. [20, 17].
Malandrakis et al. [19] have shown that there can be a dif-
ference even in award-winning movies in the intended and
experienced emotions. The difference between good and bad
movies is essentially how well the intended emotions are por-
trayed. With their experiment, they used award-winning films
and expert annotaters to narrow the gap between the intended



Figure 1. Valence-Arousal Combinations

and expressed emotions. In our experiment, we are able to di-
rect the movers, so we assume the intended affect is identical
to the expressed affect. Therefore, it is important to note that
the categorical approach in our study did not contain a user
survey. As such, the categorical system is more of a predictor
of the intended affect, whereas the continuous model is more
of a predictor of the perceived affect.

In the field of affective computing, facial expressions are of-
ten examined in the determination of affective states [9, 13].
However, Inderbitzin et al. [14] have shown that it is possible
to perceive VA states from movement even on faceless gener-
ated characters, regardless of viewing angle. They have even
identified some canonical parameters that control the expres-
sion of emotions in locomotive behavior, such as upright up-
per body postures being perceived as more emotionally posi-
tive and vice-versa for forward leaning postures. Other doc-
umented sources also suggest that humans convey emotions
through body movement and postures [7, 8]. Analysis of head
pose and movement is able to achieve 71.2% accuracy in rec-
ognizing depression [3]. Furthermore, studies in movement
have shown certain features in expressive movement, such as
portrayal of strength, can be linked to specific emotions, such
as fear or anger [8, 28].

In affect estimation based on body movement, there have
been many studies in using dance with mixed results [5, 15,
23]. Kapur et al. developed classifiers that achieved com-
parable regconition rates as observers using dance move-
ments [16]. However, as Kleinsmith points out, dance is often
exaggerated to convey affect [17].

Looking at non-dance-based systems, Castellano et al. have
attempted to infer emotional states using video analysis on
movement qualities such as amplitude, speed, and fluidity.
Their system was able to discriminate between “high” and
“low” arousal emotions and “positive” and “negative” [6].
Pollick et al. conducted a study to compare the performance
of their automatic system with human recognition. In their
study, they used 3D positioning measurements of the arm
in knocking, lifting, and waving motions with two affective
states, neutral and angry. They concluded that the automatic
system was able to discriminate between the two states more

consistently than humans [24]. Samadani et al. developed a
system for both full body as well as hand-arm improvisiation
movements to discriminate between 4 affective states using
HMMs with good results [26].

Nicolau et al. developed a system for estimation of affect
modalities in the Valence-Arousal space using multi-modal
input (based on facial expression, shoulder gesture, and audio
cues). Their approach claims to be unique in that it performs
continuous affect prediction according to the valence-arousal
model. In their paper, they compare both Support Vector Ma-
chines (SVM) and bi-directional Long-Short-Term Memory
Neural Networks (BLSTM-NN), concluding that BLSTM-
NN perform better [21]. However, we have decided not to
use BLSTM-NN due to the fact that they were using differ-
ent sets of input data (extracting data from video and audio
as well as mainly focusing on facial expressions); in our case
we are using motion capture data with no facial expressions.
Furthermore, the lack of a benchmark and standard skeleton
markers due to the use of different datasets and body markers
in the aforementioned studies makes it difficult to compare
and evaluate different systems.

More generally, classification of motion capture data into cat-
egories has been explored in different contexts. For example,
Adam et al. outlined an approach using clustering and Hidden
Markov Models for identification of humans by gait [1].

For our study, we will be using Russell’s model of affect [25].
A drawback of Russell’s model is that some researchers such
as Fontaine et al. [10] are starting to believe more dimensions
are needed to describe the emotional space. To our knowl-
edge, automatic systems in affect classification using motion
capture data and such a broad coverage of VA states has not
yet been attempted.

DATASET

Motion Capture Data
As part of the efforts of the MovingStories project, an open
source MoCap database (http://moda.movingstories.
ca/) [22] has been created. For this study, we are using some
of the recordings in this database that have been labelled ac-
cording to the circumplex model of affect [25]. The data are
in the form of MoCap bvh files and accessible in the Mo-
Cap database (http://moda.movingstories.ca/projects/
29-affective-motion-graph). Two professional actors, one
male and one female, performed in the videos, carrying out 9
different types of movements: walking in a figure eight pat-
tern, hugging, static improvisation, free improvisation, sit-
ting down, pointing while sitting, walking with sharp turns,
improvisation, and lying down. There are 9 takes for each
movement, corresponding to the 9 different possible VA com-
binations shown in Figure 1, covering more emotional states
than similar existing datasets (e.g. 4 emotions in the library
presented by Ma et al. [18]). Existing labels were created by
dividing the Russell’s model [25] into low, neutral, and high
along both the valence and arousal axis. Using this model,
anger would be classified as low on the valence axis but high
on the arousal axis.

http://moda.movingstories.ca/
http://moda.movingstories.ca/
http://moda.movingstories.ca/projects/29-affective-motion-graph
http://moda.movingstories.ca/projects/29-affective-motion-graph


Figure 2. MoCap skeleton

Figure 3. Motion Capture Frame

The data were recorded with a Vicon motion capture system
with 53 markers, mapped to a skeleton representation with 30
joints as shown in Figure 2, at 120 frames per second. Se-
quences varied in length from 2500 frames to 10000 frames.
A sample frame rendered in Matlab is shown in Figure 3.
Each frame contains the Euler angles for each of the joints,
as well as the spatial location and orientation of the skeleton
root.

Pre-Processing
Rotational positions for joints are expressed in Euler angles
(−180 deg to +180 deg), which are used as features in both
the categorical and the continuous approach. We normalized
these values to -1 to 1. We also translated the values for
the center of mass position to delta values (i.e. ∀n > 0,
(dxn, dyn, dzn) = (xn − xn−1, yn − yn−1, zn − zn−1)),
thereby eliminating bias due to geometrical translation. Fur-
thermore, we computed rotational velocity and acceleration
values for all joints and for the centroid position. We have
chosen to use the low level positional information as features
as a first approach. We notice this is also the approach taken
by related works [24, 21]. It is not clear yet which specific
high level features would be effective for our data, ratings,
and affective states. However, this is an area to be explored
in our future directions.

Ground Truth
Given that this is a supervised machine learning task, it is nec-
essary to choose ground truth values for the labels assigned to
samples in the training set. In our case, the database was cu-
rated and therefore labeled when the recordings were made.

For the categorical approach, we are accepting this annota-
tion as ground truth. For the continuous approach, we used
labels provided by external observers as ground truth. We
did not use these labels in the categorical approach as ground
truth because the performers were only given the categories
and not a continuous spectrum. Therefore, the categorical ap-
proach can be considered as a classification of the intended
emotions rather than the perceived.

In order to ensure the inter-rater reliablility, and in turn the va-
lidity of our experiment, we will also examine the Intraclass
Correlation Coefficient (ICC) as a measure of the inter-rater
reliability of the ratings. To evaluate the validity of our sys-
tem, we test the categorical approach using MoCap sequences
that were labelled the same way as the training data but never
seen before by our system. For the continuous approach we
examine the coefficient of determination for our regression
models.

METHODS
We conducted an online survey to obtain valence and arousal
ratings from observers in order to establish ground truth on
the continuous scale from which to construct our linear re-
gression models.

Participants
The participants of the validation process were 33 undergrad-
uate second and third year students enrolled in a computer
animation course. Other background information about the
participants was not collected. All responses were anony-
mous and could not be traced back to any particular student.
All students are willing participants with informed consent in
this study and were able to drop out of the study at any time
during the survey without consequences. Participants were
not offered compensation for this study.

Materials
The video clips used range in length from about 10 to 25 sec-
onds of two different professional actors. Each clip shows
either an actor walking in a figure eight pattern or walking in
a straight line with several sharp turns. Each clip has been
labelled in terms of valence and arousal levels as either high,
neutral, or low by the region on the affect grid corresponding
to the valence and arousal prompt given to the actors when
they performed the movements. We used 3 takes of move-
ments for the survey, 2 for the figure eight pattern, and 1 for
the sharp turns. Each take covers all 9 possible combinations
of valence and arousal, with an additional neutral valence,
neutral arousal clip for each take, resulting in a total of 30
videos, the order of which are randomized for each partici-
pant. The responses for the extra videos shown in the survey
were used for another experiment and were not included in
this analysis. We did not include the other movements such
as hugging and free improvisation in order to keep the survey
at a reasonable length. The other movements were included in
the categorical approach due to the fact that it did not involve
participants.



Figure 4. Screenshot of video in survey

The motion capture data are converted to video mp4 format
from bvh files, the widely accepted format for motion cap-
ture data. The bvh motion capture files only show a skele-
tal format without facial expressions. As such, participants
must rely on movement cues to discern levels of valence and
arousal. Figure 4 is an example screenshot from a video in
the survey.

Procedure
In the first part of the study, the model of affect was defined
and explained for the participants. The series of 30 videos
was then presented as an online survey where the participant
recorded on a two-dimensional scale interface what he or she
perceived to be the valence and arousal for that video. Each
response is then recorded in a database. Figure 5 is an ex-
ample of the interface the participants see after making a re-
sponse. The specific mood descriptors shown in the figure
were chosen because they were the same descriptors given to
the actors in their instruction during recording of the move-
ment data used in this study. Participants were free to ask for
clarification regarding the model or the interface at any point
during the survey. No post-experiment questions were asked.

After the survey, we eliminate biased or outlier results before
conducting further analysis. A response was considered bi-
ased or an outlier if it was obvious that the participant did not

Figure 5. Sample response on the interface. This particular case illus-
trates a low valence and a relatively neutral arousal.

watch the video closely, ie. giving a response after 2 seconds
or less. In the second part of the study, the procedure for each
different approach is described below.

EXPERIMENT AND RESULTS
For our experiments, we built both categorical and continu-
ous systems in affect estimation. In application, categorical
labels are simpler construct. Continuous systems, however,
obviously offers a more detailed comparison between move-
ments. In the context of animation, users can specify the ex-
act amount of valence or arousal for their characters. Fur-
thermore, for a sequence of movement, categorical labelling
gives discrete classification at each time step whereas contin-
uous labelling can show the trajectory of change in affect over
time.

Categorical Model
In our categorical approach, we construct models using the
existing VA labels for each movement as the ground truth.
The labels represent the VA that were given as instructions to
the actors when they performed the movements. They are
essentially the VA that the actors were attempting to por-
tray. We also examined the survey results here to see how
the observer ratings compare with the VA labels. Observers
agree with these categorical labels mostly in the low to neutral
range. Furthermore, the categories are more distinguished for
observers in arousal than valence. Figures 6 and 7 present a
summary of the valence and arousal ratings given by partici-
pants from the survey.

The survey shows that participants are consistent in almost all
cases in distinguishing between low and high for both valence
and arousal, an exception being that responses for neutral and
high valence of the sharp and figure eight walk were not sig-
nificantly different from each other. However, although the
relative perception is similar to the existing labels, the partic-
ipants view almost all neutral and high valence and arousal
movements to be lower than the amount the actors attempted
to express. In contrast, most low valence and arousal move-
ments were perceived to be closer to neutral. This further
suggests there is a difference between the intended and per-
ceived affect when only considering body movement.

We tested Hidden Markov Models (HMM), Support Vec-
tor Machines (SVM), and k-Nearest Neighbour (k-NN),
with HMM producing the best results. SVM were im-
plemented using libsvm (https://www.csie.ntu.edu.tw/
˜cjlin/libsvm/). We achieved the best SVM results of
43% accuracy using a linear kernel, nu-SVC classification
with nu-value of 0.8. The k-NN was implemented using the
Matlab package (http://www.mathworks.com/help/stats/
knnsearch.html). We experimented with a variety of dis-
tance functions, with the best result coming from the City-
block, achieving 54% accuracy. Both SVM and k-NN results
were the best achieved through cross-validation.

Using Kevin Murphy’s Hidden Markov Model toolbox
(http://www.cs.ubc.ca/˜murphyk/Software/HMM/hmm.
html), we trained nine HMM models, one for each combina-
tion (NVNA, HVLA, etc.). Each HMM has five states and
is built using a Gaussian distribution on the training data,

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.mathworks.com/help/stats/knnsearch.html
http://www.mathworks.com/help/stats/knnsearch.html
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html


(a) Valence responses (b) Arousal responses

Figure 6. Mean participant responses to sharp walk videos. Error bars indicate 95% confidence interval

chosen because these parameters yielded the best results.
For any given test input, the model that gave the highest log
probability was considered to be the prediction made by the
system.

In the first run, all motion-capture sequences of one actor
were used as the training and the sequences of the other actor
was used as test. The log-likelihood for each test sequence
was calculated for each of the nine models. The label of the
model that returned the highest log-likelihood was taken to
be the prediction. In this case, the HMM achieved 16.87%
test accuracy. This low accuracy is likely due to the models
overfitting to each particular actor.

In the second run, the first half of all motion-capture se-
quences was used as the training and the second half of all
sequences was used as test. The same parameters and proce-
dures were used otherwise. In this case, the HMM achieved
72.56% test accuracy. This was the best accuracy achieved
through cross-validation. The majority of errors came from
sequences of movements that differ in gesture, such as im-
provisation and hugging. It could also be the case that these
movements have more varied movement signatures. For ex-
ample, perhaps the actors use an occasional arm raise in the
second half of the MoCap, resulting in a movement that is
still logical in the context of a free improvisation movement
but is a gesture that the model has never seen before. In con-
trast, using movements with a smaller number of movement
signatures such as the figure eight walk and the sharp walk
results in a test accuracy of 89.29%.

Continuous Model
An important issue of using a continuous approach is that
inter-rater reliability of VA ratings amongst the participants is
challenging [12]. To address this, we first examine the ICC.
Table 1 shows the ICC of ratings in both valence and arousal
using Cronbach’s α as an index. An α of 0.7 or higher is
generally considered to be good reliability. In this case, both

Measure Intraclass Correlation
Valence Cronbach’s α 0.89
Arousal Cronbach’s α 0.98

Table 1. Intraclass Correlation Coefficient of Ratings

the valence index, with a 95% confidence interval of 0.814 to
0.945 and the arousal index, with a 95% confidence interval
of 0.97 to 0.991, suggest that the ratings provided are reliable
enough to use for building models. However, the higher in-
dex for arousal suggest that it is easier for observers to agree
on the level of arousal than the level of valence, most likely
because the energy is more easily differentiable than the emo-
tion without a facial expression.

For the continuous approach, we used a stepwise linear re-
gression model to fit the features extracted from the bvh file
to the predictor value for valence and arousal given by the
participants. We chose a stepwise linear regression because
models generated from different users are expected to be quite
different and the stepwise regression can easily and automat-
ically explore different choices of predictive variables for dif-
ferent models. This was implemented using the linear regres-
sion package in Matlab (http://www.mathworks.com/help/
stats/stepwiselm.html). We constructed models based on
the figure eight walk and the sharp turn as those were the only
movements in the online survey. We built valence and arousal
models for each individual user as well as for the entire group.
Each model was built from 25 frames of every movement for
which the participant provided a response. We downsampled
from 120 to 5 frames per second, resulting in a total of 5 sec-
onds of movement. This ensures that the frames used in the
construction of models are frames that the participants have
viewed.

To evaluate our linear regression models, we examine the co-
efficient of determination (R2), which indicates how well the
data fit a linear regression. An R2 is defined in (1), with fi

http://www.mathworks.com/help/stats/stepwiselm.html
http://www.mathworks.com/help/stats/stepwiselm.html


(a) Valence responses (b) Arousal responses

Figure 7. Mean participant resopnses to 8 walk videos. Error bars indicate 95% confidence interval

being the prediction made by the model and ȳ being the mean
of the ratings. Therefore, a high R2 indicates that the regres-
sion fits the data well. Figure 8 shows the R2 of valence and
arousal models built using the responses of each participant.
The individual user valence models have a mean R2 of 0.86
with a standard deviation of 0.068. The arousal models have
a mean R2 of 0.93 with a standard deviation of 0.046. Using
the average rating for each movement, the all-users model
results in a R2 of 0.925 for valence and 0.985 for arousal
with p < 0.001. Testing these models on 25 frames cover-
ing another 5 second span, the individual models produce an
average mean squared error (MSE) of 0.183 for valence and
0.145 for arousal. The combined model results in an MSE of
0.0748 for valence and 0.0583 for arousal. We define MSE
in (2), where ŷi is the prediction made by the system and yi
is the rating given by the user.

R2 = 1− SSres

SStot

SSres =
∑
i

(yi − fi)2

SStot =
∑
i

(yi − ȳ)2

(1)

MSE =
1

n

n∑
i=1

(ŷ − yi)2 (2)

Lastly, we conducted a Pearson correlation test between va-
lence and arousal on all the participant responses of 1163 data
points, resulting in an insignificant (p > 0.05) negative corre-
lation. This suggests viewers can perceive valence indepen-
dently from arousal.

DISCUSSION
In the categorical approach, Hidden Markov Models achieved
much better results than SVM and k-nearest neighbour. Ac-
tor bias clearly plays a role, and we can improve our results
by training on a dataset including a greater number of actors.
It also appears that the majority of errors arose from move-
ments with a less defined functional and executional dimen-
sions of movement, such as improvisations, suggesting that
certain movements might require a different model of clas-
sification or different feature extraction. In comparison with
the survey results, HMM using features that are potentially
unnoticeable to observers suggests that a significant differ-
ence exists between the VA expressed by the mover and the
VA perceived by the observer. In that case, the categorical
labelling of the HMM is only accurate in the sense that it
classifies the intended VA, but not the perceived VA.

In the continuous approach, stepwise linear regression has
shown it can produce individual models with high coefficient
of determination. However, the individual models generally
have a high MSE. A model built from the average responses
of all participants had a higher R2 and a lower MSE than the
average individual model, suggesting that using more partic-
ipant responses will result in a better model. In almost all
cases, arousal models show less variability and less error, to-
gether with the difference in the ICC between valence and
arousal ratings suggest that it is easier for observers to agree
on arousal than valence. In contrast to the categorical system,
the continuous system makes predictions on the perceived VA
rather than the expressed VA. Potential future work includes
constructing models using a subset of participants or using
ratings of expert movers as ground truth to achieve better
models as well as extending to other movements than walk-
ing.

CONCLUSION AND FUTURE WORKS
We built systems for automatic affect classification in the
valence-arousal space using both categorical and continuous



(a) Valence models (b) Arousal models

Figure 8. Average R2 of models

approaches. For the categorical approach, we used the pre-
existing labels used to prompt the actors as the ground truth.
For the continuous approach, we conducted an online sur-
vey to obtain continuous ratings from observers to establish
a ground truth. Our experiments determined that people can
perceive affect in MoCap without facial expression, agree on
the affect they perceive, and train machines to classify affect.

For both categorical and continuous approaches, a drawback
of our experiment was that even though there were many
movement types in our dataset, it was all from two actors.
This can lead to the classification systems overfitting to these
two actors. Therefore, it is among our future directions to
expand the database to include more actors. Furthermore, we
are also looking into exploring dimensionality reduction tech-
niques and higher level feature selection. Our goal is to even-
tually be able to generalize to a more varied dataset with more
actors.
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