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ABSTRACT
In this paper we present a state of the art of the current ap-
proaches to visualization of motion capture data. We dis-
cuss the data representation, pre-processing techniques, and
the design of existing tools and systems. Next we outline the
advantages and disadvantages of the systems, some of which
are explicitly noted by the original authors. Lastly we con-
clude with an overall summary and future directions.
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INTRODUCTION
Historically, humans have developed many techniques of rep-
resenting motions in a single image. The illustration of mo-
tion serves to allow the audience to easily understand the na-
ture of the motion. As humans, the visualization of human
movement has naturally been an interesting topic. Before
the invention of photographs, movements were represented
in drawings or paintings. With technological advances, there
are new tools to visualize motion. Motion capture is flexible
in that data can be recorded for whatever action is considered
necessary for the research project. The data is also easily con-
trolled in terms of the sample size and duration. Therefore,
many research groups are working with full body motion cap-
ture data. However, expanding databases leads to a growing
importance to be able to effectively visualize large amounts
of data. In this paper, the terms motion and movement are
used interchangeably as they both refer specifically to human
motions.

As Alemi et al. [1] notes, works on human movement visu-
alization can be classified as artisitic visualizations, move-
ment information analytics, and movement summarizations.
Artistic visualization includes works such as Bodycloud [31]
where sculptures are created from the spaces of the move-
ment, or EMVIZ [35] where effort qualities are mapped to
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visual representations. Movement information analytics in-
clude visualizations that provide insights to the characteris-
tics of movements and are used to evaluate and understand
movements. It illustrates structural information of the move-
ment. Examples include ActionPlot [13], and Synchronous
Objects [30]. Movement summarizations are visualizations
that are used to provide a synopsis of the movement itself or
to compare the contents of movement data, usually by map-
ping the data to a lower dimension space. This paper aims to
present a state of the art on the current techniques and sys-
tems in the static movement summarization visualization of
human movement. While it can be argued that video render-
ings will always produce the best visualization of movement,
we believe using a rendering defeats the purpose of a sum-
marization as one would have to watch the rendering in its
entirety. Therefore, video and rendering techniques are not
discussed here.

For the rest of the paper, we start with some common tech-
niques used to visualize motion throughout history before
motion capture. Next, we describe the general data represen-
tations used by the works presented in this paper as well as
introduce commonly used databases. The following sections
present the various pre-processing techniques used to handle
motion capture data and visualization approaches of the cur-
rent systems. This paper is not meant to provide implemen-
tation details for these systems but rather summarizations of
systems that are tackling the problem of motion visualization.
Lastly, we conclude with a discussion on the advantages and
disadvantages of the presented systems, issues with motion
visualization in general, and then a summary of the paper, the
presented works, as well as concluding remarks and future
directions.

HISTORY
Without the context of data, James Cutting has outlined the
techniques of representing motion that pertains especially to
drawings: dynamic balance, multiple stroboscopic images,
affine shear, photographic blur, and action lines [14]. Dy-
namic balance refers to the broken symmetry or instability of
the human form. Stroboscopic images are the use of multiple
images within one to depict motion. Affine shear is where
the subject is shown leaning into the direction of movement.
Phtographic blur is where movement is represented by a blur
as though from a long-exposure photograph. Action lines are
lines or arrows that illustrate movement.

Cutting evaluates these techniques with the following criteria:
evocativeness, clarity, direction, and precision. Evocativeness
refers to whether the representation succeed in evoking a feel-
ing of motion in the viewer. Clarity means whether the object



Figure 1. Motion cues [11] showing movements with motion arrows, noise waves, and stroboscopic motion: (a)spin kick (b)dancing pirouette (c)cart
wheel (d)bending over

that is represented can be accurately identified. Direction is
referring to whether the direction of movement is clear to the
viewer. And lastly, precision means the amount of motion
that has occurred.

Dynamic balance can be traced back as far as the early
Greeks [36]. Although it does evoke a sense of motion, Cut-
tings noted that this technique is not very accurate in repre-
senting the direction or precision of motion.

The original use of stroboscopic images is attributed to fig-
ures such as Leonardo in the Vitruvian Man and Descartes in
Meditations, and then taking off in the late 19th century with
fast films, fast lighting, and photography [14]. Stroboscopic
images was shown to be so effective at representing motion
that even preschoolers understood them [15]. However, the
direction of motion is unclear with this representation.

Affine shear or forward lean is a technique commonly used
starting in the 20th century by artists and cartoonists [14].
It shows an effort in overcoming inertia or moving into the
wind. The amount of lean is often representative of the speed
at which the subject is moving. Although the directionality is
clear, it is used at the discretion of the artist, and as such, it is
impossible to compare the relative speeds between different
images.

With a stationary framework in photographic blur, the sense
of motion is evoked in the viewer for the blurred parts. It is
only effective in the evocativeness aspect, as the blur renders
the movement unclear in its clarity, direction, and precision.

The use of action lines and motion arrows attempts to solve
the issues in the previous techniques regarding clarity and di-
rectionality. They originate from vectors as defined in math-
ematics. Action lines can be combined with stroboscopic im-
ages with good effect [27]. However, action lines seem more
difficult to understand for children [15]. According to Cut-
ting [14], this is the most effective technique in satisfying the
four criteria.

In more recent times, other notation techniques have been de-
veloped, such as the Labanotation and the Benesh notation.
The Labanotation [17] describes movement through motif,
effort-shape, and structure. Meanwhile, the Benesh notation
is similar to staff music notation and often used to describe
dance. [6].

The context of the problem is different today given the de-
velopment of media from still images to dynamic videos, and
then encapsulating the 3D information in the form of motion
capture. Although the overall intent is still to visualize mo-
tion, motion capture offers a new level of precision for every
limb. With time-based media, the problem is one of the quan-
tity of information, hence the need for summarization. To
that end, many systems and interfaces have been developed.
The exact motive of each system are different. However, they
are similar in their goal to reduce the data while still present-
ing a salient summary, whether it be for viewing or further
comparison and analysis.

DATA AND DATA REPRESENTATION
Full body motion capture data is collected by recording the
movements of an actor wearing a body suit with markers and
cameras or sensors. Using different marker positions, num-
ber of markers, or sensors could result in a different skeleton.
The file format of motion capture can also vary, such as BVH,
Acclaim, and Collada. However, the content of encoded in-
formation is usually similar, such as positions and angles of
the joints in a body. Examples of other features that can be
computed are outlined by Larboulette and Gibet [23]. All
of these encoded or extrapolated information are referred to
as the dimensions or features of motion capture data. The
process of motion capture is described by Bodenheimer and
Rose [10], involving gathering of the data, construction of a
virtual skeleton, and the processing required to produce the
desired joint angle information.

When viewing the files directly, a sequence of a human stick
figure is seen moving through the space. The motion capture
information, specifically the joint angles are typically repre-
sented using Euler angles or quaternions, with the former be-
ing the simpler and more intuitive to implement [10]. How-
ever, it has been suggested that quaternions are usually more
ideal because they are easier to renomralize and the interpo-
lation or orientation is more easily defined [10, 33]. Luckily,
conversion between the two is a fairly trivial process [9]. As
the size of databases grow, so does the importance of having
efficient visualizations to browse through these databases.

For publicly available data, the CMU motion capture
database [16] found at http://mocap.cs.cmu.edu is com-
monly used. They use a Vicon motion capture system with 12
infrared MX-40 cameras. Their skeleton consists of at least



41 markers. The resulting files are in asf and amc formats.
The list of motions they have captured include various forms
of walking, climbing, playing, dancing, sports performances,
and other everyday movement.

Another publicly available source is the HDM05
database [28] found at http://resources.mpi-inf.
mpg.de/HDM05/. Their recorded motions are tracked by a
Vicon MX system with 12 cameras. Their skeleton consists
of 40 to 50 markers. They also use asf and amc file formats
with documented parsing tools, with videos available as
well. The goal of the authors is to provide researchers with
motion capture data in addition to the CMU motion capture
database. However, the HDM05 database is more limited in
the range of different motions that it contains.

A third and newly developed database is the MoDa
database [29], found at http://moda.movingstories.ca. As
a more recent database, the quantity of data and documenta-
tion is more limited than the other two databases. However,
MoDa contains data captured with Vicon, video camera, as
well as Kinect. MoDa also contains generated motion cap-
ture data. It uses Mova [1] as its front end. There are also
addons such as MOTATE [29] and MoComp [26] under de-
velopment.

PRE-PROCESSING
With skeletons containing over 40 markers, the joint positions
and angles that are generated from these markers can result in
vectors with hundreds of dimensions for every frame of the
motion capture. This leads to a huge amount of data to be
visualized. Therefore, dimensionality reduction for the pur-
pose of data abstraction is a significant process for all motion
visualization tools. The goal is to retain the important charac-
teristics that are indicative for that motion while simplifying
the dimensions of the data so that it can be effectively visual-
ized in some way.

To abstract the data, many systems use some variation of
clustering algorithms or dimensionality reduction techniques,
keyframe extraction, or a combination of all of the above.
There have been extensive work in the development of clus-
ter data mining techniques to handle multivariate data [7],
including hierarchical, spectral, density-based, and partition-
based clustering. Keyframes are considered a good visual-
ization of motion capture data because they are the frames
containing the representative poses of that motion.

Clustering and Dimensionality Reduction
Out of the many clustering techniques, the self-organizing
map (SOM) [22] have been noted by Hu et al. [18] as ef-
fective for visualization as it projects the data onto a grid-like
topology. SOM converts high-dimensional input to a low-
dimensional map. Nodes that are in closer proximity within
the map are more similar in the original data. In the context
of motion capture data, this would mean that nodes in a SOM
that are close together had similar joint positions and angles.
A straightforward visualization would then be to simply place
all the frames within the SOM with weighted positions as
shown by Wu et al. [38]. However, the grid resolution can
easily become unmanageable with this method. Therefore,
other techniques are often needed in addition to SOM.

Hierarchical clustering algorithms have been used in systems
such as GestureAnalyzer [19]. Similar gestures are grouped

together and then given a tree structure. Nodes that are closer
within the tree mean those gestures are more similar.

Principal component analysis (PCA) [21] is another well-
known technique for dimensionality reduction that has been
applied to motion capture data. For example, Barbič et
al. [5] used PCA to segment motion data into distinct mo-
tions. However, it has been noted that PCA is more suitable
for datasets that contain more varied poses [18], which may
not be the case for motion data.

Keyframe Extraction
The goal of keyframe extraction is to select the frames that
best represent the motion. The methods usually fall under one
of three categories: curve simplification, clustering, and ma-
trix factorization [12]. These methods differ mainly in their
representation of the data.

In curve simplification, the data is represented as a curve in
high-dimensional space. Curve simplification algorithms are
then applied to this trajectory. The intersections of the sim-
plified curve segments are defined as the keyframes. An ex-
ample is the work of Xiao et al. [39] where they showed this
method is able to compress and summarize the features of
the data efficiently as well as maintain consistency between
similar motion sequences.

Clustering methods refer to those described in the previous
section. In the context of keyframe extraction, a frame in each
cluster is selected to be the keyframe. This is the method used
by Liu et al. [25] where they extracted keyframes for motion
data retrieval.

Lastly, in matrix factorization, frames are represented using
matrices containing the feature vectors. The motion is then
summarized using techniques such as singular value decom-
positions. An example of this method is seen in the action
synopsis system of Assa et al. [2].

VISUALIZATION APPROACHES
There are many visualization approaches to render clusters or
keyframes produced from pre-processing. Most approaches
result in the form of image summaries, interactive platforms
or graphical user interfaces (GUI), or less commonly, videos
and animation.

Image Summaries
Using an image or picture to represent motion is arguably
the most intuitive approach. Combined with the nature of
keyframes, it is not a surprise that many groups choose to
visualize motions using keyframes in some way.

Motion Map
Initially developed for efficient motion data retrieval using
image-based keys, the motion map system by Sakamoto et
al. [32] results in a visualization of motion that is close to sim-
ply displaying the SOM. However, they do realize that dis-
playing every frame in the SOM will result in clutter. By us-
ing aforementioned clustering and keyframe extraction tech-
niques, a resulting motion map is produced. Because their
system is run on multiple motion files, the resulting map can
be considered as an overview for all the motions present in
those files. Although it is a rather simplified visual repre-
sentation, a viewer is able to at least extrapolate the motions
within the batch of files as well as see similar motions clus-
tered to some extent.



Figure 2. Motion visualization of GestureAnalyzer [19]

Figure 3. An example of a motion belt [40] output for walking with a 90
degree turn. The color indicates the hip orientation.

Motion Cues
Similar to the techniques presented by Cutting [14], Bouvier-
Zappa et al. [11] adds motion cues onto the extracted
keyframes. An example is shown in Figure 1. They also
note that they can easily highlight the motions of a particular
limb. However, the authors note that it was sometimes diffi-
cult to link several key poses to reconstruct the original mo-
tion. Therefore, their technique was more effective for move-
ments such as walking and running. They also attempted a
more specific application of their system in foot sequence il-
lustration for use in dance notation.

As the motion cues are similar to the works presented by Cut-
ting [14], they can also be evaluated in terms of evocativeness,
clarity, direction, and precision. Bouvier-Zappa et al. [11]
also notes that they had these criteria in mind when they de-
signed their system. However, they did not explicitly test the
effectiveness of their visualization via those or other criteria.
Another drawback is that the temporal element of the origi-
nal motion capture data is lost in their final output, as it is not
possible to determine the duration of the original movement.

Motion Belt
Yasuda et al. [40] wanted to present the temporal element of
the data in their motion visualization as well as illustrate the
motion itself. To that end they developed the motion belt.
Similar to many other approaches, the motion belt can be
seen as a presentation of a few selected keyframes that are
able to demonstrate to the viewer the nature of the motion.
The keyframes are placed with their correct relative distances
apart on a horizontal timeline, showing the location from
which the keyframes were extracted in the original data. Un-
like the motion cue system, the motion belt is unable to high-
light particular limbs. An example of the motion belt repre-
sentation is shown in Figure 3. Using a greyscale of colors,
they are able to show the changes in orientation that occured.

As their goal for the motion belt was efficient data brows-
ing, Yasuda et al. [40] tested their system by measuring the
time to find a given motion. The result was that participants
took a shorter time using a motion belt compared to just us-
ing content description and a link to the target clip. However,

Figure 4. Generated motion tracks [18] for jumping, marching, and
walking.

although the authors claim the motion belt can also be used
for motion comparison, Hu et al. [18] notes that the motion
belt is insufficient for comparison. Furthermore, comparing
multiple motion belts at once can becomes an increasingly
difficult problem.

Motion Track
In order to visualize the variations between motion data, Hu
et al. [18] developed the motion track. Keyframes in the low
dimensional space are connected using colored lines to form
a track. As shown in Figure 4, the jumping track is clearly
separated from the others because jumping is a very differ-
ent motion. However, walking and marching is expected to
have some similar poses, and thus they show some overlap.
Hu et al. also demonstrates the ability of motion tracks to
differentiate motions. They use colors to indicate the motion
speed: the brighter the color, the slower the motion. Through
the use of visually clustering tracks and colors for highlight-
ing, a viewer is able to distinguish the relative differences in
features between motions.

The authors note that a drawback of their system is that some
features of the motion track are only available for motions
with high stability such as walking, running, and marching.
Furthermore, although the keyframes are shown on the sides
of the tracks, they are not definitive enough to understand the
nature of the motion without the accompanying label for ev-
ery track. It is also implied that a longer original sequence
would result in a longer track, but even if this is the case,
that is a difficult distinction to make from simply viewing the
tracks. It is also impossible to see where those keyframes lie
within the original data.

Action Synopsis
The last example of visualization using keyframes is the ac-
tion synopsis system developed by Assa et al. [2]. Their goal
with this system is to be able to summarize and describe a



Figure 5. An example output of the action synopsis system [2] for a
sneaking sequence.

complex motion. The overall process is similar to previously
described, from raw data to pre-processing to rendering the
keyframes as the final representation. A difference in their
system is that they are able to use animation sequences and
video clips as input in addition to the motion capture data
used by the other systems. An example of their final output
is shown in Figure 5. Through the use of stroboscopic im-
ages and colored lines to indicate the path, a summary of the
motion is depicted.

Assa et al. [2] verify their results by conducting a survey to
determine whether their system selected the keyframes cho-
sen by users, achieving good results. For future work they
plan to improve the key frame selection rules and analyze
more complex motions. However, there is no way to de-
termine how long a sequence had taken other than the im-
plication that a longer sequence probably results in more
keyframes shown. Furthermore, a relatively complex motion
such as the sneaking sequence shown in Figure 5 resulted in
needing more than one image to summarize the motion.

Interactive Platforms
Other groups have opted to use a form of interactive plat-
form or GUIs to visualize the features of a motion capture
sequence. The most notable advantage of this approach is
that the system is no longer restricted to summarizing the en-
tire motion into a single or a few images. Furthermore, an
interface means the visualization can be customized to some
extent. Due to the interactive nature, these platforms can be
easily be used in fields such as education, healthcare, move-
ment annotation, dance, and other creative applications. On
the other hand, the intricacies of the platform itself could ren-
der the visualization more difficult for a user to understand or
at the very least require more learning time.

Mova
Alemi et al. [1] developed an interactive web-based platform
for movement visualization called Mova. The aim of the plat-
form is movement feature extraction, visualization, and anal-
ysis of movement data as well as to provide a research tool
for the evaluation of movement feature extraction techniques.
Mova consists of feature extraction components, a visualiza-
tion engine, and the graphical user interface. In addition to the
regular motion capture features, Mova is also able to extract
Laban effort parameters [34], body shape measures, gestures,

Figure 6. Hierarchical tree visualization in MotionExplorer [8]

emotions, health conditions, and gait patterns. The visual-
ization engine can illustrate a figure sketch of the movement
as well as specific joints, using multi-hued color scales and
highlighting for emphasis between figures. Mova also allows
for animating of the visualizations for both full body and tra-
jectories of individual joints. The complete source code is
available at https://github.com/omimo/Mova.

The authors tested Mova using 3 theoretical scenarios. In the
first case, the researcher implements feature extraction meth-
ods. By viewing the extracted features in parallel with im-
ported annotated values, the researcher is able to compare the
extracted and annotated values and validate them. In the sec-
ond case, Mova can be used by experts in dance or healthcare
to examine the movements of a dancer or patient and draw
relevant conclusions. In the third case, Mova is used as the
front-end for a movement database where the user can easily
browse for data.

MotionExplorer
Bernard et al. [8] developed the MotionExplorer system for
searching and exploring motion databases. Poses in the data
are clustered and displayed as a hierchical tree structure as
shown in Figure 6. A viewer can determine which motions
are similar in this way. Furthermore, a viewer can make con-
clusions on how dissimilar two motions are based on the num-
ber of branches they are apart. An individual sequence can
also be viewed in a graph format where nodes show key poses
or frames and edges indicate the transition between poses.
The graph representation, allows for visualization of cycles
in the motion but is not able to clearly visualize the starts and
ends of a motion. The nodes of the tree and graph structures
are organized by color in terms of the similarity in features.

Based on the works of Balzer and Deussen [4] and Von Lan-
desberger et al. [37], Bernard et al. allows for customization
in the level of detail or aggregation that a user wants to view
in the graph structure. In their design process, Bernard et al.
included both experts and non-experts to refine the interface
using questionaires and informal interviews. To test their in-
terface and system, they asked five domain experts to test Mo-
tionExplorer and then give feedback in various aspects such
as usability, effectiveness, and efficiency. The system was
well-received.

GestureAnalyzer
With more specific applications in examination of gestures,
Jang et al. [19] developed the GestureAnalyzer. Due to us-



ing a Kinect sensor to capture the data, their motion range is
limited to gestures. Just like the MotionExplorer, the Gesture-
Analyzer uses a hierarchical clustering method to group their
data into a tree structure. However, instead of showing the
poses or frames as nodes in the tree, GestureAnalyzer simply
uses text labels and IDs. They also make use of color in their
tree organization.

An actual visualization of a gesture is shown in Figure 2 with
the tree structures on the left. The poses are shown with the
active joint highlighted in red, where the active joint is the
limb used to perform the gesture. The highlighting allows a
viewer to visually compare differences in joint movement be-
tween different motions. Gestures can also be viewed as an
animation. The authors conducted user studies to test the ef-
fectiveness of their system and claims that GestureAnalyzer
allowed users to easily identify gesture patterns. Jang et al.
note that limitations of their system include the input data be-
ing restricted to gestures as well as being unable to quickly
display a large amount of data. Furthermore, unlike Motion-
Explorer, GestureAnalyzer uses a predetermined clustering
structure and does not allow users to modify.

MotionFlow
Building on the works of MotionExplorer and GestureAna-
lyzer, Jang et al. [20] later developed the MotionFlow sys-
tem, also to be used for gesture analysis. Similar to the pre-
vious two systems, they cluster motions but using K-means,
a partition-based structure. They claim this allows for easier
cluster customization from the user.

Although there are similarities in the approach of Motion-
Flow compared to the two previous examples, they employ
several differences as well. They maintained the tree, subtree,
and graph structure. As in GestureAnalyzer, the gesture is vi-
sualized as an animation. However, they have also combined
the trees with a flow diagram to indicate the transition of mo-
tion as well as a treemap, seen in (c). The thickness of lines
in the tree indicate the frequency of transitions between those
frames. The lines are also color-coded in accordance with the
treemap to give an alternate representation to the tree.

The authors tested MotionFlow with user studies which intro-
duced users to the system and then conducting interviews and
questionaires afterwards. Results showed that MotionFlow
was able to generate representative trees for the input gestures
and that it was good for comparing multiple gestures. The au-
thors note that a major limitation in MotionFlow is that they
have been working with gestures that start with a common
pose. Using different starting poses would result in messy
trees due to the different root node.

Video and Animation
Each of the interactive platforms can all show motion data
as animation. Tools used to animate motion capture in-
clude Markerless Motion Capture, Autodesk, Xsens, and Op-
tiTrack. There are also systems that are more focused in re-
producing the raw data in the form of a video or animation.
Examples include the work of Assa et al. [3] where they cre-
ate a motion overview video and Lee et al. [24] where they vi-
sualize the motion as animated avatars. There are differences
in the pre-processing of these approaches such as creating a
camera path that are presented by aforementioned studies. It
is undeniable that renderings can produce effective visualiza-
tions of movement. However, the issues of note for this form
of visualization is that a viewer can obviously see the motion

System Pre-
processing

Visualization

Motion map Clustering
via SOM
and keyframe
extraction

Single image, simpli-
fied SOM

Motion cues Keyframe ex-
traction

Single image,
keyframes with
motion cues

Motion belt Keyframe ex-
traction

Single image,
keyframes placed on
horizontal timeline

Motion track Clustering via
SOM, LLE,
and keyframe
extraction

Single image, multi-
ple colored tracks

Action synopsis Keyframe ex-
traction

Multiple images,
keyframes with lines
to indicate path and
stroboscopic images

Table 1. Summary of the image-based systems presented in this paper.

in its entirety. But as the entire sequence obviously has to be
seen, they do not serve as good summaries or overviews of
the motion, nor can viewers easily examine aspects such as
particular limbs as in an interactive platform.

DISCUSSION
As with any summary, the loss of data is inevitable. Com-
bined with the high dimensionality of motion capture data,
the visualization of said data is not a trivial problem. A com-
mon problem during the pre-processing process is computa-
tional load and scalability of the overall system.

Summarizing motions with images offers the advantage of
being easy to understand. However, transforming the data
from many frames to a single or several frames results in in-
evitable loss of data or features. The temporal aspect of the
original motion is most often lost in the final visual represen-
tation. In almost all cases, the viewer can no longer determine
the length of the original motion either in timespan or relative
to other motions in a comparison. Even so, these approaches
have shown good results within the contexts of their original
goal, even if the goal usually involves other applications than
simply producing an effective visualization.

The other common approach to visualizing motion is to use
an interactive platform. Compared to producing images, this
method has the benefit of being able to present different levels
of detail or aspects of the raw data, such as visualizing indi-
vidual joints. An interactive interface also allows for easier
customization and input from the user regarding how the data
should be handled. The user can manually tag the data and
have more control during pre-processing. It is also common
to make use of other visualization methods such as trees and
graphs to depict the motion. However, the interactive inter-
face is potentially more difficult for users to learn.

An important issue is that most systems do not test for the ef-
fectiveness of their visualization. This is especially evident in
the systems producing image summaries or focused in videos
and animations. Most of them test for the efficiency of their
system such as search times in motion belt [40] and retrieval
times in motion map [32]. Therefore, although we can ana-



System Pre-
processing

Visualization

Mova Feature ex-
traction and
computation

Horizontal timeline,
colored highlighting,
can be joint-specific,
animations

MotionExplorer Hierarchical
clustering

Tree and graph
views, color-coded
clustering

GestureAnalyzer Hierarchical
clustering

Tree view, gesture-
specific, colored
highlighting, anima-
tions

MotionFlow K-means
partition-
based cluster-
ing

Treemap, tree with
flow-integration
and graph views,
gesture-specific,
colored highlighting,
animations

Table 2. Summary of the interactive platforms presented in this paper.

lyze the advantages and disadvantages of their techniques, it
is impossible to make an empirical statement about the effec-
tiveness of the visualization itself. In fact, given the different
goals and intents of these systems, there is not even a set of
standard criteria with which to evaluate these visualizations.

Evaluation is more well-established with interactive systems,
as all examples except Mova had documented use cases. Per-
haps this is due to the recognition that an interactive platform
would require more input from the user in creating the visual-
ization. Even then, there is no standard set of questionaire or
interview questions which is deemed required to fully evalu-
ate the effectiveness of the visualization. Furthermore, only
in the case of MotionExplorer was there input at the design
stage from domain experts. Lastly, other than Mova, most
systems do not explicitly make their code publicly available.

CONCLUSION
This paper presents the current approaches to visualizing mo-
tion capture data. The process of acquiring motion capture
data is explained by Bodenheimer et al. [10]. Commonly used
and publicly available motion capture data can be found at
the CMU [16], HDM05 [28], and MoDa [29] databases. Due
to the high dimensionality of motion capture, pre-processing
involving dimensionality reduction, clustering algorithms, or
keyframe extraction is often required. After pre-processing,
most groups produce a visualization of the motion using ei-
ther images, interactive platforms, or less commonly, videos
and animations. A summary of the image-based systems and
interactive platforms presented in this paper can be found in
Table 1 and Table 2 respectively. All of the works presented
in this paper uses full body motion capture data as input. An
exception is the action synopsis system by Assa et al. [2] also
being able to use animation sequences or video clips and the
GestureAnalyzer and MotionFlow using Kinect data.

As shown in the presented examples, attempts in visualizing
motion often results in loss of data, especially in image-based
systems. Using multiple interfaces, interactive platforms can
show all available features in one way or another but has the
drawback of potentially being a more complex system to learn
for the user.

The presented systems also focus mostly on the representa-
tion of the whole body. Some exceptions such as Mova [1],
and motion cues [11] has some support for individual limb
visualizatio. GestureAnalyzer and MotionFlow also deal ex-
clusively with gestures. However, this is also an area for po-
tential future exploration, as it is feasible that many applica-
tions in fields such as healthcare or dance would be interested
in more systems that tailor visualizations to certain limbs.
Furthermore, with the development of more advanced sen-
sors, different motion tracking data such as facial expression
recognition, and eye tracking can be included in the visual-
ization.

In the end, it is difficult to evaluate the effectiveness of one
technique or system in the context of another. The image-
based systems are especially lacking in explicit tests for the
effectiveness of the visualizations. The interactive systems
are more diligent in testing their systems with user studies,
questionaires, and interviews. Even then there is not a stan-
dardized set of tests by which these platforms can be eval-
uated. As such, there is the potential in future demands for
standardized criteria by which to evaluate all of these systems
as well as tools to be developed for the purpose of evaluation.
A good start could simply be to gather feedback specifically
on the visualization aspects of these tools from end-users or
visualization experts.
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